Skip to main content

Contact Finite Element with Surface Tension Adhesion

  • Chapter
  • First Online:
Technologies for Medical Sciences

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 1))

  • 1157 Accesses

Abstract

This work is a contribution on the development of a computational model of lung parenchyma capable to simulate mechanical ventilation manoeuvres. This computational model should be able to represent adhesion caused by surface tension and be able suffer collapse and alveolar recruitment. Therefore, a contact finite element was developed and then simulated in a structure with structural properties of the same order of magnitude of a real alveolus. The simulation was performed with the non-linear finite element method. The implementation of the arc-length method was also necessary in order to prevent divergence at limit points. The numerical results of the simulation of a single alveolus, including the surface tension and adhesion, are qualitatively similar to experimental data obtained from whole excised lungs. Both present hysteresis and transmural pressures of the same order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moore KL, Dalley AF (2001) Anatomia orientada para a clínica, 4th edn. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  2. Fung YC (1975b) Circ Res 37:497

    Google Scholar 

  3. Fung YC (1975a) Circ Res 37:481

    Google Scholar 

  4. Bassingthwaighte JB (2000) Ann Biomed Eng 28:1043

    Google Scholar 

  5. Hoppin FG, Lee GC, Dawson SV (1975) J Appl Physiol 39(5):742

    Google Scholar 

  6. Vawter DL, Fung YC, West JB (1978) J Appl Physiol 45(2):261

    Google Scholar 

  7. Zeng YJ, Yager D, Fung YC (1987) J Biomech Eng 109:169

    Google Scholar 

  8. Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York

    Google Scholar 

  9. Hansen JE, Ampaya EP, Bryant GH, Navin JJ (1975) J Appl Physiol 38(6):983

    Google Scholar 

  10. Hansen JE, Ampaya EP (1975) J Appl Physiol 38(6):990

    Google Scholar 

  11. Dale PJ, Matthews FL, Schroter RC (1980) J Biomech 13:865

    Google Scholar 

  12. Fung YC (1988) J Appl Physiol 64:2132

    Google Scholar 

  13. Tawhai MH, Burrowes KS (2003) Anat Rec B New Anat 275B:207

    Google Scholar 

  14. Veldhuizen R, Nag K, Orgeig S, Possmayer F (1998) Biochim Biophys Acta 1408:90

    Google Scholar 

  15. Schürch S, Lee M, Gehr P (1992) Pure Appl Chem 64:1745

    Google Scholar 

  16. Schürch S, Bachofen H, Goerke J, Possmayer F (2001) Comp Biochem Physiol A 129:195

    Google Scholar 

  17. Hills BA (1999) J Appl Physiol 87:1567

    Google Scholar 

  18. Butt HJ, Kappl M (2010) Surface and interfacial forces. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (Alemanha)

    Google Scholar 

  19. McArdle WD, Katch FI, Katch VL (2006) Exercise physiology: energy, nutrition, and human performance, 6th edn. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  20. Felippa C (2001) Nonlinear finite element method. Department of Aerospace Engineering Sciences and Center for Space Structures and Controls: University of Colorado, Boulder. http://www.colorado.edu/engineering/CAS/courses.d/NFEM.d/Home.html

  21. Reddy JN (2008) An introduction to continuum mechanics. Cambridge University Press, Cambridge, Reino Unido

    Google Scholar 

  22. Maksym GN, Bates JHT (1997) J Appl Physiol 82(1):32

    Google Scholar 

  23. Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin (Alemanha)

    Google Scholar 

  24. Crisfield MA (1981) Comput Struct 13:55

    Google Scholar 

  25. Schweizerhof KH, Wriggers P (1986) Comput Method Appl Mech Eng 59:261

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Counsel of Technological and Scientific Development (“Conselho Nacional de Desenvolvimento Cientfico e Tecnolgico” – CNPq) 135262/2007-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf A. P. Hellmuth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hellmuth, R.A.P., Lima, R.G. (2012). Contact Finite Element with Surface Tension Adhesion. In: Natal Jorge, R., Tavares, J., Pinotti Barbosa, M., Slade, A. (eds) Technologies for Medical Sciences. Lecture Notes in Computational Vision and Biomechanics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4068-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4068-6_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4067-9

  • Online ISBN: 978-94-007-4068-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics