Skip to main content

Recent Progress in Studying the Human Foot

  • Chapter
  • First Online:
Technologies for Medical Sciences

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 1))

  • 1288 Accesses

Abstract

This chapter has the objective of illustrate some of the work being done on human foot studies in the last years related to its structure and its influence on human locomotion, namely gait, as a mean of detecting physical or pathological problems. One of the aims of this work is to describe the experimental techniques available, some of them developed by the authors, and their fields of application. This description will start with a brief approach to gait characteristics as an introduction to the purpose of using the experimental techniques. First, experimental data acquisition and processing techniques are described, by indicating the type of available systems and then a brief literature review on the research developments on measuring plantar pressures and forces. At last, a section is dedicated to describe numerical techniques and methodologies used today in plantar forces analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allison WWM (2005) Medical and environmental physics

    Google Scholar 

  2. Antunes PJ, Dias GR et al (2007) Non-linear finite element modelling of anatomically detailed 3D foot model. Mimmics Innovation Awards 2007

    Google Scholar 

  3. Bernardini F, Rushmeier HE (2002) The 3D model acquisition pipeline. Comput Graph Forum 21(2):149–172

    Article  Google Scholar 

  4. Bhatia MM, Patil KM (1999) New on-line parameters for analysis of dynamic foot pressures in neuropathic feet of Hansen’s disease subjects. J Rehabil Res Dev 36(3)

    Google Scholar 

  5. Birtane M, Tuna H (2004) The evaluation of plantar pressure distribution in obese and non-obese adults. Clin Biomech 19:1055–1059

    Article  Google Scholar 

  6. Burnfield JM, Tsai Y-J et al (2005) Comparison of utilized coefficient of friction during different walking tasks in persons with and without a disability. Gait Posture 22:82–88

    Article  Google Scholar 

  7. Bus SA, Ulbrecht JS et al (2004) Pressure relief and load redistribution by custom-made insoles in diabetic patients with neuropathy and foot deformity. Clin Biomech 19(6):629–638

    Article  Google Scholar 

  8. Cavanagh PR, Ulbrecht JS et al (2000) New developments in the biomechanics of the diabetic foot. Diabetes Metab Res Rev 16(S1):S6–S10

    Article  Google Scholar 

  9. Cham R, Redfern MS (2002) Changes in gait when anticipating slippery floors. Gait Posture 15:159–171

    Article  Google Scholar 

  10. Cheung JT, Zhang M et al (2004) Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex. Clin Biomech 19:839–846

    Article  Google Scholar 

  11. Cheung JT, Zhang M et al (2005) Three-dimensional finite element analysis of the foot during standing – a material sensitivity study. J Biomech 38:1045–1054

    Article  Google Scholar 

  12. Colagiuri S, Marsden LL et al (1995) The use of orthotic devices to correct plantar callus in people with diabetes. Diabetes Res Clin Pract 28:29–34

    Article  Google Scholar 

  13. Cordero AF, Koopman HJFM et al (2004) Use of pressure insoles to calculate the complete ground reaction forces. J Biomech

    Google Scholar 

  14. Davis BL, Perry JE et al (1998) A device for simultaneous measurement of pressure and shear force distribution on the plantar surface of the foot. J Appl Biomech 14:93–104

    Google Scholar 

  15. Erdemir A, Saucerman JJ et al (2005) Local plantar pressure relief in therapeutic footwear: design guidelines from finite element models. J Biomech 38:1798–1806

    Article  Google Scholar 

  16. Faivre A, Dahan M et al (2004) Instrumented shoes for pathological gait assessment. Mech Res Commun

    Google Scholar 

  17. Gallagher M, Abboud RJ et al (1999) The role of microengineering in pedobarography. Foot 9:79–83

    Article  Google Scholar 

  18. Gefen A (2003) Plantar soft tissue loading under the medial metatarsals in the standing diabetic foot. Med Eng Phys 25:491–499

    Article  Google Scholar 

  19. Geil MD (2002) The role of footwear on kinematics and plantar foot pressure in fencing. J Appl Biomech 18:155–162

    Google Scholar 

  20. Hennig EM, Milani TL (1995) In-shoe pressure distribution for running in various types of footwear. J Appl Biomech 11(3):299–310

    Google Scholar 

  21. Hosein R, Lord M (2000) A study of in-shoe plantar shear in normals. Clin Biomech 15:46–53

    Article  Google Scholar 

  22. Hughes R, Rowlands H et al (2000) A laser plantar pressure sensor for the diabetic foot. Med Eng Phys 22:149–154

    Article  Google Scholar 

  23. Koulaxouzidis AV, Holmes MJ et al (2000) A shear and vertical stress sensor for physiological measurements using fibre Bragg gratings. In: 22nd annual international conference of the IEEE engineering in medicine and biology society, Chicago

    Google Scholar 

  24. Laing P, Deogan H et al (1992) The development of the low profile liverpool shear transducer. Clin Phys Physiol Meas 13(2):115–124

    Article  Google Scholar 

  25. Lebar AM, Harris GF et al (1993) Development of a miniature plantar shear force sensing transducer. In: 15th annual international conference of the IEEE engineering in medicine and biology society

    Google Scholar 

  26. Lebar AM, Harris GF et al (1996) An optoelectric plantar “shear” sensing transducer: design, validation and preliminary subject tests. IEEE Trans Rehabil Eng 4(4):310–319

    Article  Google Scholar 

  27. Lemmon D, Shiang TY et al (1997) The effect of insoles in therapeutic footwear - a finite element approach. J Biomech 30(6):615–620

    Article  Google Scholar 

  28. Lobmann R, Kayser R et al (2001) Effects of preventative footwear on foot pressure as determined by pedobarography in diabetic patients: a prospective study. Diabet Med 18:314–319

    Article  Google Scholar 

  29. Lord M, Hosein R et al (1992) Method for in-shoe shear stress measurement. J Biomed Eng 14(3):181–186

    Article  Google Scholar 

  30. Marques A (2008) Desenvolvimento de Estruturas Planas com Caracterização Dinâmica de Forças em 3D - Aplicação ao Pé. Engineering Sciences. Porto, Universidade do Porto. PhD: 321.(in portuguese)

    Google Scholar 

  31. Marques MA, Nabais C et al (2008) Modelação do pé para o estudo de tensões internas localizadas. 7º Congresso de Mecânica Experimental Vila Real. (in portuguese)

    Google Scholar 

  32. Marques MA, Ribeiro R et al (2010) Sensor Portátil para Medição de Forças Plantares em 3D. INPI. Portugal, Universidade do Porto e Instituto Politécnico do Porto. (in portuguese)

    Google Scholar 

  33. Nagano A, Yoshioka S et al (2005) A three-dimensional linked segment model of the whole human body. Int J Sport Health Sci 3:311–325

    Article  Google Scholar 

  34. Orlin MN, McPoil TG (2000) Plantar pressure assessment. Phys Ther 80:399–409

    Google Scholar 

  35. Paradiso J, Hu E et al (1999) The cyberShoe: a wireless multisensor interface for a dancer’s feet. International Dance and Technology, Tempe, p 99

    Google Scholar 

  36. Razian MA, Pepper MG (2003) Design, development, and characteristics of an in-shoe triaxial pressure measurement transducer utilizing a single element of piezoelectric copolymer film. IEEE Trans Neural Syst Rehabil Eng 11(3):288–293

    Article  Google Scholar 

  37. Schmidt MW, Lopez-Ortiz C et al (2003) Foot force direction in an isometric pushing task: prediction by kinematic and musculoskeletal models. Exp Brain Res 150:245–254

    Google Scholar 

  38. Sousa D, Tavares J et al (2006) A gait analysis laboratory for rehabilitation of patients with musculoskeletal impairments. CompIMAGE - C Computational Modelling of Objects Represented in Images: Fundamentals, Methods and Applications, Coimbra

    Google Scholar 

  39. Sousa D, Tavares J et al (2007) Análise Clínica da Marcha Exemplo de Aplicação em Laboratório de Movimento. 2º Encontro Nacional de Biomecânica, Évora, Portugal. (in portuguese)

    Google Scholar 

  40. Stott JRR, Hutton WC et al (1973) Forces under the foot. J Bone Joint Surg 55B(2):335–344

    Google Scholar 

  41. Sutherland DH (2002) The evolution of clinical gait analysis: part II kinematics. Gait Posture 16(2):159–179

    Article  Google Scholar 

  42. Sutherland DH (2005) The evolution of clinical gait analysis part III - kinetics and energy assessment. Gait Posture 21(4):447–461

    Article  Google Scholar 

  43. Tappin JW, Pollard J et al (1980) Method of measuring ‘shearing’ forces on the sole of the foot. Clin Phys Physiol Meas 1:83–85

    Article  Google Scholar 

  44. Tavares P (2010) Three dimensional geometry characterization using structured light fields. Faculdade de Engenharia, Universidade do Porto. PhD

    Google Scholar 

  45. Urry S (1999) Plantar pressure-measurement sensors. Meas Sci Technol 10:R16–R32

    Article  Google Scholar 

  46. Vaughan CL, Davis BL et al (1999) Dynamics of human gait

    Google Scholar 

  47. Winter DA (2005) Biomechanics and motor control of human movement. Wiley, Hoboken

    Google Scholar 

  48. Yung-Hui L, Wei-Hsien H (2005) Effects of shoe inserts and heel height on foot pressure, impact force, and perceived comfort during walking. Appl Ergon 36:355–362

    Article  Google Scholar 

  49. Zhu H, Hams GF et al (1991) A microprocessor-based data-acquisition system for measuring plantar pressures from ambulatory subjects. IEEE Trans Biomed Eng 38(7):710–714

    Article  Google Scholar 

  50. Zhu HS, Maalej N et al (1990) An umbilical data-acquisition system for measuring pressures between the foot and shoe. IEEE Trans Biomed Eng 37(9):908–911

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. C. Pinto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pinto, V.C., Marques, M.A., Vaz, M.A.P. (2012). Recent Progress in Studying the Human Foot. In: Natal Jorge, R., Tavares, J., Pinotti Barbosa, M., Slade, A. (eds) Technologies for Medical Sciences. Lecture Notes in Computational Vision and Biomechanics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4068-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4068-6_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4067-9

  • Online ISBN: 978-94-007-4068-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics