Skip to main content

Abstract

With recent technical development, new imaging methods are rapidly introduced and creative use of them improves drug development and clinical application. But small numbers of them are integrated in the clinical use. For this reason, understanding the meaning of biomarker and the methodological strategy for validation are important. The purpose of this comment is to explore the basis for the use of imaging biomarker in clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, J.W., Devanarayan, V., Barrett, Y.C., et al.: Fit-for-purpose method development and validation for successful biomarker measurement. Pharm. Res. 23, 312–328 (2006)

    Article  Google Scholar 

  2. Frank, R., Hargreaves, R.: Clinical biomarkers in drug discovery and development. Nat. Rev. Drug Discov. 2, 566–580 (2003)

    Article  Google Scholar 

  3. Smith, J.J., Sorensen, A.G., Thrall, J.H.: Biomarkers in imaging: realizing radiology’s future. Radiology 227, 633–638 (2003)

    Article  Google Scholar 

  4. Annas, G.J.: Faith (healing), hope and charity at the FDA: the politics of AIDS drug trials. Villanova Law Rev. 34, 771–797 (1989)

    Google Scholar 

  5. Schuster, D.P.: The opportunities and challenges of developing imaging biomarkers to study lung function and disease. Am. J. Respir. Crit. Care Med. 176, 224–230 (2007)

    Article  Google Scholar 

  6. Kelloff, G.J., Hoffman, J.M., Johnson, B., et al.: Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Res. 11, 2785–2808 (2005)

    Article  Google Scholar 

  7. Choi, H.J., Kim, S.H., Seo, S.S., et al.: MRI for pretreatment lymph node staging in uterine cervical cancer. AJR Am. J. Roentgenol. 187, W538–W543 (2006)

    Article  Google Scholar 

  8. Oh, J., Henry, R.G., Pirzkall, A., et al.: Survival analysis in patients with glioblastoma multiforme: predictive value of choline-to-N-acetylaspartate index, apparent diffusion coefficient, and relative cerebral blood volume. J. Magn. Reson. Imaging 19, 546–554 (2004)

    Article  Google Scholar 

  9. Katz-Brull, R., Lavin, P.T., Lenkinski, R.E.: Clinical utility of proton magnetic resonance spectroscopy in characterizing breast lesions. J. Natl. Cancer Inst. 94, 1197–1203 (2002)

    Article  Google Scholar 

  10. Swindle, P., McCredie, S., Russell, P., et al.: Pathologic characterization of human prostate tissue with proton MR spectroscopy. Radiology 228, 144–151 (2003)

    Article  Google Scholar 

  11. Bezabeh, T., Smith, I.C., Krupnik, E., et al.: Diagnostic potential for cancer via 1H magnetic resonance spectroscopy of colon tissue. Anticancer Res. 16, 1553–1558 (1996)

    Google Scholar 

  12. Mahon, M.M., Williams, A.D., Soutter, W.P., et al.: 1H magnetic resonance spectroscopy of invasive cervical cancer: an in vivo study with ex vivo corroboration. NMR Biomed. 17, 1–9 (2004)

    Article  Google Scholar 

  13. Villringer, A., Rosen, B.R., Belliveau, J.W., et al.: Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn. Reson. Med. 6, 164–174 (1988)

    Article  Google Scholar 

  14. Le Bihan, D.: Looking into the functional architecture of the brain with diffusion MRI. Nat. Rev. Neurosci. 4, 469–480 (2003)

    Article  Google Scholar 

  15. Heugen, U., Schwaab, G., Bründermann, E., et al.: Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy. Proc. Natl. Acad. Sci. 103, 12301–12306 (2006)

    Article  ADS  Google Scholar 

  16. Vij, J.K., Simpson, D.R.J., Panarina, O.E.: Far infrared spectroscopy of water at different temperatures: GHz to THz dielectric spectroscopy of water. J. Mol. Liq. 112, 125–135 (2004)

    Article  Google Scholar 

  17. Zhuang, W., Feng, Y., Prohofsky, E.W.: Self-consistent calculation of localized DNA vibrational properties at a double-helix-single-strand junction with anharmonic potential. Phys. Rev. A 41, 7033–7042 (1990)

    Article  ADS  Google Scholar 

  18. Young, L., Prabhu, V.V., Prohofsky, E.W., Edwards, G.S.: Prediction of modes with dominant base roll and propeller twist in B-DNA poly(dA)-poly(dT). Phys. Rev. A 41, 7020–7023 (1990)

    Article  ADS  Google Scholar 

  19. Fischer, B., Hoffmann, M., Helm, H., et al.: Terahertz time-domain spectroscopy and imaging of artificial RNA. Opt. Express 13, 5205–5215 (2005)

    Article  ADS  Google Scholar 

  20. Markelz, A.G., Knab, J.R., Chen, J.Y., He, Y.: Protein dynamical transition in terahertz dielectric response. Chem. Phys. Lett. 442, 413–417 (2007)

    Article  ADS  Google Scholar 

  21. Kutteruf, M.R., Brown, C.M., Iwaki, L.K., Campbell, M.B., Korter, T.M., Heilweil, E.J.: Terahertz spectroscopy of short-chain polypeptides. Chem. Phys. Lett. 375, 337–343 (2003)

    Article  ADS  Google Scholar 

  22. Fitzgerald, A.J., Wallace, V.P., Jimenez-Linan, M., et al.: Terahertz Pulsed Imaging of Human Breast Tumors1. Radiology 239, 533–540 (2006)

    Article  Google Scholar 

  23. Wallace, V.P., Fitzgerald, A.J., Shankar, S., et al.: Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo. Br. J. Dermatol. 151, 424–432 (2004)

    Article  Google Scholar 

  24. Woodward, R.M., Wallace, V.P., Pye, R.J., et al.: Terahertz pulse imaging of ex vivo basal cell carcinoma. J. Investig. Dermatol. 120, 72–78 (2003)

    Article  Google Scholar 

  25. Park, JY., Choi, HJ., Cho, K-S., Kim, K-R., Son, J-H.: Terahertz spectroscopic imaging of a rabbit VX2 hepatoma model. J. Appl. Phy. 109:064704-064704-064704

    Google Scholar 

  26. Oh, S.J., Kang, J., Maeng, I., et al.: Nanoparticle-enabled terahertz imaging for cancer diagnosis. Opt. Express 17, 3469–3475 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyuck Jae Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Choi, H.J., Son, JH. (2012). Imaging Biomarker. In: Park, GS., et al. Convergence of Terahertz Sciences in Biomedical Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3965-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-3965-9_20

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-3964-2

  • Online ISBN: 978-94-007-3965-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics