Skip to main content

The Dimeric Proto-Ribosome Within the Modern Ribosome

  • Chapter
  • First Online:
Genesis - In The Beginning

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 22))

  • 2096 Accesses

Abstract

A structural element that could have existed independently in the prebiotic era was identified at the active site of the contemporary ribosome’s large subunit. It is suggested to have functioned as a proto-ribosome, catalyzing noncoded peptide bond formation and primitive elongation. This simple apparatus, constructed from a dimer of small, self-folding, stable RNA molecules, structurally related to tRNA, could have assembled spontaneously under prebiotic conditions. Its structure enabled the catalysis of peptide bond formation in the same manner that the contemporary ribosome exerts positional catalysis by accommodating the two reactants in a stereochemistry favorable for peptide bond formation. This prebiotic entity, which was efficient and stable enough to be retained by evolution as the highly conserved active site of the ribosome, was the matrix from which the modern protein biosynthesis mechanism – common to all living organisms – has evolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramovitz DL, Pyle AM (1997) Remarkable morphological variability of a common RNA folding motif: the GNRA tetraloop-receptor interaction. J Mol Biol 266:493–506

    Article  PubMed  CAS  Google Scholar 

  • Agmon I (2009) The dimeric proto-ribosome: structural details and possible implications on the origin of life. Int J Mol Sci 10:2921–2934

    Article  PubMed  CAS  Google Scholar 

  • Agmon I, Auerbach T, Baram D, Bartels H, Bashan A, Berisio R, Fucini P, Hansen HA, Harms J, Kessler M, Peretz M, Schluenzen F, Yonath A, Zarivach R (2003) On peptide bond formation, translocation, nascent protein progression and the regulatory properties of ribosomes. Eur J Biochem 270:2543–2556

    Article  PubMed  CAS  Google Scholar 

  • Agmon I, Bashan A, Zarivach R, Yonath A (2005) Symmetry at the active site of the ribosome: structural and functional implications. Biol Chem 386:833–844

    Article  PubMed  CAS  Google Scholar 

  • Agmon I, Bashan A, Yonath A (2006) On ribosome conservation and evolution. Isr J Ecol Evol 52:359–374

    Article  Google Scholar 

  • Agmon I, Davidovich C, Bashan A, Yonath A (2009) Identification of the prebiotic translation apparatus within the contemporary ribosome. http://precedings.nature.com/documents/-2921/version/1

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905–920

    Article  PubMed  CAS  Google Scholar 

  • Bashan A, Agmon I, Zarivach R, Schluenzen F, Harms J, Berisio R, Bartels H, Franceschi F, Auerbach T, Hansen HA, Kossoy E, Kessler M, Yonath A (2003) Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. Mol Cell 11:91–102

    Article  PubMed  CAS  Google Scholar 

  • Battle DJ, Doudna JA (2002) Specificity of RNA-RNA helix recognition. Proc Natl Acad Sci USA 99:11676–11681

    Article  PubMed  CAS  Google Scholar 

  • Belousoff MJ, Davidovich C, Zimmerman E, Caspi Y, Wekselman I, Rozenszajn L, Shapira T, Sade-Falk O, Taha L, Bashan A, Weiss MS, Yonath A (2010) Ancient machinery embedded in the contemporary ribosome. Biochem Soc Trans 38:422–427

    Article  PubMed  CAS  Google Scholar 

  • Bokov K, Steinberg SV (2009) A hierarchical model for evolution of 23S ribosomal RNA. Nature 457:977–980

    Article  PubMed  CAS  Google Scholar 

  • Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Müller KM, Pande N, Shang Z, Yu N, Gutell RR (2002) The comparative RNA Web CRW. Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3:1–31

    Article  Google Scholar 

  • Chworos A, Severcan I, Koyfman AY, Weinkam P, Oroudjev E, Hansma HG, Jaeger L (2004) Building programmable jigsaw puzzles with RNA. Science 306:2068–2072

    Article  PubMed  CAS  Google Scholar 

  • Costa M, Michel F (1997) Rules for RNA recognition of GNRA tetraloops deduced by in vitro selection: comparison with in vivo evolution. EMBO J 16:3289–3302

    Article  PubMed  CAS  Google Scholar 

  • Davidovich C, Belousoff M, Bashan A, Yonath A (2009) The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery. Res Microbiol 160:487–492

    Article  PubMed  CAS  Google Scholar 

  • Davis JH, Tonelli M, Scott LG, Jaeger L, Williamson JR, Butcher SE (2005) RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex. J Mol Biol 351:371–382. http://www.ncbi.nlm.nih.gov/pubmed/16002091?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum

    Google Scholar 

  • Di Giulio M (1992) On the origin of the transfer RNA molecule. J Theor Biol 159:199–214

    Article  PubMed  Google Scholar 

  • Dick TP, Schamel WA (1995) Molecular evolution of transfer RNA from two precursor hairpins: implications for the origin of protein synthesis. J Mol Evol 41:1–9

    Article  PubMed  CAS  Google Scholar 

  • Doshi KJ, Cannone JJ, Cobaugh CW, Gutell RR (2004) Evaluation of the suitability of free energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction. BMC Bioinformatics 5:105

    Article  PubMed  Google Scholar 

  • Draper DE (2004) A guide to ions and RNA structure. RNA 10:335–343

    Article  PubMed  CAS  Google Scholar 

  • Eigen M, Lindemann BF, Tietze M, Winkler-Oswatitsch R, Dress A, von Haeseler A (1989) How old is the genetic code? Statistical geometry of tRNA provides an answer. Science 244:673–679

    Article  PubMed  CAS  Google Scholar 

  • Fox GE, Naik AK (2004) The evolutionary history of the ribosome. In: de Pouplana LR (ed) The genetic code and the origin of life. Landes Bioscience, Georgetown, pp 92–105

    Chapter  Google Scholar 

  • Gregory ST, Dahlberg AE (2004) Peptide bond formation is all about proximity. Nat Struct Mol Biol 11:586–587

    Article  PubMed  CAS  Google Scholar 

  • Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S, Agmon I, Bartels H, Franceschi F, Yonath A (2001) High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107:679–688

    Article  PubMed  CAS  Google Scholar 

  • Hsiao C, Mohan S, Kalahar BK, Williams LD (2009) Peeling the onion: ribosomes are ancient molecular fossils. Mol Biol Evol 26:2415–2425

    Article  PubMed  CAS  Google Scholar 

  • Jaeger L, Chworos A (2006) The architectonics of programmable RNA and DNA nanostructures. Curr Opin Struct Biol 16:531–543

    Article  PubMed  CAS  Google Scholar 

  • Jaeger L, Michel F, Westhof E (1994) Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. J Mol Biol 236:1271–1276

    Article  PubMed  CAS  Google Scholar 

  • Jaeger L, Westhof E, Leontis NB (2001) TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Res 29:455–463

    Article  PubMed  CAS  Google Scholar 

  • Joshi PC, Aldersley MF, Delano JW, Ferris JP (2009) Mechanism of montmorillonite catalysis in the formation of RNA oligomers. J Am Chem Soc 131:13369–13374

    Article  PubMed  CAS  Google Scholar 

  • Kholod NS (1999) Dimer formation by tRNAs. Biochemistry (Mosc) 64:298–306

    CAS  Google Scholar 

  • Klein DJ, Moore PB, Steitz TA (2004) The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. J Mol Biol 340:141–177

    Article  PubMed  CAS  Google Scholar 

  • Korostelev A, Trakhanov S, Laurberg M, Noller HF (2006) Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126:1065–1077

    Article  PubMed  CAS  Google Scholar 

  • Maizels N, Weiner AM (1994) Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc Natl Acad Sci USA 91:6729–6734

    Article  PubMed  CAS  Google Scholar 

  • Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  PubMed  CAS  Google Scholar 

  • Nagaswamy U, Fox GE (2003) RNA ligation and the origin of tRNA. Orig Life Evol Biosph 33:199–209

    Article  PubMed  CAS  Google Scholar 

  • Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930

    Article  PubMed  CAS  Google Scholar 

  • Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci USA 98:4899–4903

    Article  PubMed  CAS  Google Scholar 

  • Pino S, Ciciriello F, Costanzo G, Di Mauro E (2008) Nonenzymatic RNA ligation in water. J Biol Chem 283:36494–36503

    Article  PubMed  CAS  Google Scholar 

  • Pley HW, Flaherty KM, McKay DB (1994) Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature 372:111–113

    Article  PubMed  CAS  Google Scholar 

  • Pyle AM (2002) Metal ions in the structure and function of RNA. J Biol Inorg Chem 7:679–690

    Article  PubMed  CAS  Google Scholar 

  • Roy MD, Wittenhagen LM, Kelley SO (2005) Structural probing of a pathogenic tRNA dimer. RNA 11:254–260

    Article  PubMed  CAS  Google Scholar 

  • Russell R (2008) RNA misfolding and the action of chaperones. Front Biosci 13:1–20

    Article  PubMed  CAS  Google Scholar 

  • Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005) Structures of the bacterial ribosome at 3.5 A resolution. Science 310:827–834

    Article  PubMed  CAS  Google Scholar 

  • Selmer M, Dunham CM, Murphy FV 4th, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–1942

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA, Moore PB (2003) RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem Sci 28:411–418

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Li JM, Wartell RM (2007) Conversion of stable RNA hairpin to a metastable dimer in frozen solution. RNA 13:2277–2286

    Article  PubMed  CAS  Google Scholar 

  • Thirumoorthy K, Nandi N (2007) Homochiral preference in peptide synthesis in ribosome: role of amino terminal, peptidyl terminal, and U2620. J Phys Chem B 111:9999–10004

    Article  PubMed  CAS  Google Scholar 

  • Voorhees RM, Weixlbaumer A, Loakes D, Kelley AC, Ramakrishnan V (2009) Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat Struct Mol Biol 16:528–533

    Article  PubMed  CAS  Google Scholar 

  • Voytek SB, Joyce GF (2007) Emergence of a fast-reacting ribozyme that is capable of undergoing continuous evolution. Proc Natl Acad Sci USA 104:15288–15293

    Article  PubMed  CAS  Google Scholar 

  • Weiner AM, Maizels N (1987) TRNA-like structures tag the 3′ ends of genomic RNA molecules for replication: implications for the origin of protein synthesis. Proc Natl Acad Sci USA 84:7383–7387

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (2001) Translation: in retrospect and prospect. RNA 7:1055–1067

    Article  PubMed  CAS  Google Scholar 

  • Yonath A (2003) Ribosomal tolerance and peptide bond formation. Biol Chem 384:1411–1419

    Article  PubMed  CAS  Google Scholar 

  • Zarivach R, Bashan A, Berisio R, Harms J, Auerbach T, Schluenzen F, Bartels H, Baram D, Pyetan E, Sittner A, Amit M, Hansen HSA, Kessler M, Liebe C, Wolff A, Agmon I, Yonath A (2004) Functional aspects of ribosomal architecture: symmetry, chirality and regulation. J Phys Org Chem 17:901–912

    Article  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Ada Yonath for initiating the ribosome evolution study and to Amitai Halevi, Noam Adir, Sagi, and Nimrod Agmon for their help. Support was provided by the US National Inst. of Health (GM34360) and the Kimmelman Center for Macromolecular Assemblies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilana Agmon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Agmon, I. (2012). The Dimeric Proto-Ribosome Within the Modern Ribosome. In: Seckbach, J. (eds) Genesis - In The Beginning. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2941-4_32

Download citation

Publish with us

Policies and ethics