Skip to main content

Ca2+ Signaling Mechanisms in Bovine Adrenal Chromaffin Cells

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

Calcium (Ca2+) is a crucial intracellular messenger in physiological aspects of cell signaling. Adrenal chromaffin cells are the secretory cells from the adrenal gland medulla that secrete catecholamines, which include epinephrine and norepinephrine important in the ‘fight or flight’ response. Bovine adrenal chromaffin cells have long been used as an important model for secretion ­(exocytosis) not only due to their importance in the short-term stress response, but also as a neuroendocrine model of neurotransmtter release, as they have all the same exocytotic proteins as neurons but are easier to prepare, culture and use in functional assays. The components of the Ca2+ signal transduction cascade and it role in secretion has been extensively characterized in bovine adrenal chromaffin cells. The Ca2+ sources, signaling molecules and how this relates to the short-term stress response are reviewed in this book chapter in an endeavor to generally ­overview these mechanisms in a concise and uncomplicated manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–8100

    Article  PubMed  CAS  Google Scholar 

  2. Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46:455–472

    Article  PubMed  CAS  Google Scholar 

  3. Neher E, Sakmann B (1992) The patch clamp technique. Sci Am 266:44–51

    Article  PubMed  CAS  Google Scholar 

  4. Carmichael SW, Winkler H (1985) The adrenal chromaffin cell. Sci Am 253:40–49

    Article  PubMed  CAS  Google Scholar 

  5. Burgoyne RD (1991) Control of exocytosis in adrenal chromaffin cells. Biochim Biophys Acta 1071:174–202

    PubMed  CAS  Google Scholar 

  6. Morgan A, Burgoyne RD (1997) Common mechanisms for regulated exocytosis in the chromaffin cell and the synapse. Semin Cell Dev Biol 8:141–149

    Article  PubMed  CAS  Google Scholar 

  7. O’Connor DT, Mahata SK, Mahata M, Jiang Q, Hook VY, Taupenot L (2007) Primary culture of bovine chromaffin cells. Nat Protoc 2:1248–1253

    Article  PubMed  Google Scholar 

  8. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  9. McFerran BW, Graham ME, Burgoyne RD (1998) Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J Biol Chem 273:22768–22772

    Article  PubMed  CAS  Google Scholar 

  10. Weiss JL, Archer DA, Burgoyne RD (2000) Neuronal Ca2+ sensor-1/frequenin functions in an autocrine pathway regulating Ca2+ channels in bovine adrenal chromaffin cells. J Biol Chem 275:40082–40087

    Article  PubMed  CAS  Google Scholar 

  11. Pan C-Y, Jeromin A, Lundstrom K, Yoo SH, Roder J, Fox AP (2002) Alterations in exocytosis induced by neuronal Ca2+ sensor-1 in bovine chromaffin cells. J Neurosci 22:2427–2433

    PubMed  CAS  Google Scholar 

  12. Weiss JL, Hui H, Burgoyne RD (2010) Neuronal calcium sensor-1 regulation of calcium channels, secretion, and neuronal outgrowth. Cell Mol Neurobiol 30:1283–1292

    Article  PubMed  CAS  Google Scholar 

  13. Quesada E, Sogorb MA, Vilanova E, Carrera V (2004) Bovine chromaffin cell cultures as model to study organophosporus neurotoxicity. Toxicol Lett 151:163–170

    Article  PubMed  CAS  Google Scholar 

  14. Goldberg AM, Zurlo J, Rudacille D (1996) The three Rs and biomedical research. Science 272:1403

    Article  PubMed  CAS  Google Scholar 

  15. de Diego AM, Gandia L, Garcia AG (2008) A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla. Acta Physiol (Oxf) 192:287–301

    Article  Google Scholar 

  16. de Diego AM (2010) Electrophysiological and morphological features underlying neurotransmission efficacy at the splanchnic nerve-chromaffin cell synapse of bovine adrenal medulla. Am J Physiol Cell Physiol 298:C397–C405

    Article  PubMed  Google Scholar 

  17. Fuller MD, Emrick MA, Sadilek M, Scheuer T, Catterall WA (2010) Molecular mechanism of calcium channel regulation in the fight-or-flight response. Sci Signal 3:ra70

    Article  PubMed  Google Scholar 

  18. Garcia AG, Garcia-De-Diego AM, Gandia L, Borges R, Garcia-Sancho J (2006) Calcium signaling and exocytosis in adrenal chromaffin cells. Physiol Rev 86:1093–1131

    Article  PubMed  CAS  Google Scholar 

  19. Mustafa T (2010) Secretion mechanisms. Cell Mol Neurobiol 30:1293–1294

    Article  PubMed  Google Scholar 

  20. Gil A, Viniegra S, Neco P, Gutierrez LM (2001) Co-localization of vesicles and P/Q Ca2+−channels explains the preferential distribution of exocytotic active zones in neurites emitted by bovine chromaffin cells. Eur J Cell Biol 80:358–365

    Article  PubMed  CAS  Google Scholar 

  21. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    Article  PubMed  CAS  Google Scholar 

  22. Schumm MA, Castellanos DA, Frydel BR, Sagen J (2004) Improved neural progenitor cell survival when cografted with chromaffin cells in the rat striatum. Exp Neurol 185:133–142

    Article  PubMed  CAS  Google Scholar 

  23. Hanke M, Farkas LM, Jakob M, Ries R, Pohl J, Sullivan AM (2004) Heparin-binding epidermal growth factor-like growth factor: a component in chromaffin granules which promotes the survival of nigrostriatal dopaminergic neurones in vitro and in vivo. Neuroscience 124:757–766

    Article  PubMed  CAS  Google Scholar 

  24. Ehrhart-Bornstein M, Vukicevic V, Chung K-F, Ahmad M, Bornstein SR (2010) Chromaffin progenitor cells from the adrenal medulla. Cell Mol Neurobiol 30:1417–1423

    Article  PubMed  Google Scholar 

  25. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26

    Article  PubMed  CAS  Google Scholar 

  26. Giovannucci DR, Hlubek MD, Stuenkel EL (1999) Mitochondria regulate the Ca(2+)-exocytosis relationship of bovine adrenal chromaffin cells. J Neurosci 19:9261–9270

    PubMed  CAS  Google Scholar 

  27. Montero M, Alonso MT, Carnicero E, Cuchillo-Ibanez I, Albillos A, Garcia AG, Garcia-Sancho J, Alvarez J (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2:57–61

    Article  PubMed  CAS  Google Scholar 

  28. Hernandez-Guijo JM, Maneu-Flores VE, Ruiz-Nuno A, Villarroya M, Garcia AG, Gandia L (2001) Calcium-dependent inhibition of L, N, and P/Q Ca2+ channels in chromaffin cells: role of mitochondria. J Neurosci 21:2553–2560

    PubMed  CAS  Google Scholar 

  29. Echevarria W, Leite MF, Guerra MT, Zipfel WR, Nathanson MH (2003) Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nat Cell Biol 5:440–446

    Article  PubMed  CAS  Google Scholar 

  30. Villalobos C, Nunez L, Montero M, Garcia AG, Alonso MT, Chamero P, Alvarez J, Garcia-Sancho J (2002) Redistribution of Ca2+ among cytosol and organella during stimulation of bovine chromaffin cells. FASEB J 16:343–353

    Article  PubMed  CAS  Google Scholar 

  31. Gerasimenko O, Gerasimenko J (2004) New aspects of nuclear calcium signalling. J Cell Sci 117:3087–3094

    Article  PubMed  CAS  Google Scholar 

  32. Alonso MT, Villalobos C, Chamero P, Alvarez J, Garcia-Sancho J (2006) Calcium microdomains in mitochondria and nucleus. Cell Calcium 40:513–525

    Article  PubMed  CAS  Google Scholar 

  33. Garcia-Sancho J, Verkhratsky A (2008) Cytoplasmic organelles determine complexity and specificity of calcium signalling in adrenal chromaffin cells. Acta Physiol (Oxf) 192:263–271

    Article  CAS  Google Scholar 

  34. Dolman NJ, Tepikin AV (2006) Calcium gradients and the Golgi. Cell Calcium 40:505–512

    Article  PubMed  CAS  Google Scholar 

  35. Berridge MJ (2006) Calcium microdomains: organization and function. Cell Calcium 40:405–412

    Article  PubMed  CAS  Google Scholar 

  36. Nowycky MC, Thomas AP (2002) Intracellular calcium signaling. J Cell Sci 115:3715–3716

    Article  PubMed  CAS  Google Scholar 

  37. Cheek TR (1989) Spatial aspects of calcium signalling. J Cell Sci 93(Pt 2):211–216

    PubMed  Google Scholar 

  38. Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3:a003947

    Article  PubMed  Google Scholar 

  39. Fox AP, Cahill AL, Currie KPM, Grabner C, Harkins AB, Herring B, Hurley JH, Xie Z (2008) N- and P/Q-type Ca2+ channels in adrenal chromaffin cells. Acta Physiol (Oxf) 192:247–261

    Article  CAS  Google Scholar 

  40. Augustine GJ, Neher E (1992) Calcium requirements for secretion in bovine chromaffin cells. J Physiol 450:247–271

    PubMed  CAS  Google Scholar 

  41. Neher E, Augustine GJ (1992) Calcium gradients and buffers in bovine chromaffin cells. J Physiol 450:273–301

    PubMed  CAS  Google Scholar 

  42. Schwaller B (2010) Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol 2:a004051

    Article  PubMed  CAS  Google Scholar 

  43. Minor DL Jr, Findeisen F (2010) Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels (Austin) 4:459–474

    Google Scholar 

  44. Nakao A, Takada Y, Mori Y (2011) Calcium channels regulate neuronal function, gene expression, and development. Brain Nerve 63:657–667

    PubMed  CAS  Google Scholar 

  45. Dolphin AC (2009) Calcium channel diversity: multiple roles of calcium channel subunits. Curr Opin Neurobiol 19:237–244

    Article  PubMed  CAS  Google Scholar 

  46. Dolphin AC (2003) G protein modulation of voltage-gated calcium channels. Pharmacol Rev 55:607–627

    Article  PubMed  CAS  Google Scholar 

  47. Zhang Y, Chen YH, Bangaru SD, He L, Abele K, Tanabe S, Kozasa T, Yang J (2008) Origin of the voltage dependence of G-protein regulation of P/Q-type Ca2+ channels. J Neurosci 28:14176–14188

    Article  PubMed  CAS  Google Scholar 

  48. Dolphin AC (1998) Mechanisms of modulation of voltage-dependent calcium channels by G proteins. J Physiol 506(Pt 1):3–11

    Article  PubMed  CAS  Google Scholar 

  49. Currie KP (2010) Inhibition of Ca2+ channels and adrenal catecholamine release by G protein coupled receptors. Cell Mol Neurobiol 30:1201–1208

    Article  PubMed  CAS  Google Scholar 

  50. Currie KP (2010) G protein modulation of CaV2 voltage-gated calcium channels. Channels (Austin) 4:497–509

    Article  CAS  Google Scholar 

  51. Currie KP, Fox AP (2000) Voltage-dependent, pertussis toxin insensitive inhibition of calcium currents by histamine in bovine adrenal chromaffin cells. J Neurophysiol 83:1435–1442

    PubMed  CAS  Google Scholar 

  52. Currie KP, Fox AP (1997) Comparison of N- and P/Q-type voltage-gated calcium channel current inhibition. J Neurosci 17:4570–4579

    PubMed  CAS  Google Scholar 

  53. Beech DJ, Bernheim L, Mathie A, Hille B (1991) Intracellular Ca2+ buffers disrupt muscarinic suppression of Ca2+ current and M current in rat sympathetic neurons. Proc Natl Acad Sci USA 88:652–656

    Article  PubMed  CAS  Google Scholar 

  54. Weiss JL, Burgoyne RD (2001) Voltage-independent inhibition of P/Q-type Ca2+ channels in adrenal chromaffin cells via a neuronal Ca2+ sensor-1-dependent pathway involves Src family tyrosine kinase. J Biol Chem 276:44804–44811

    Article  PubMed  CAS  Google Scholar 

  55. Weiss JL, Burgoyne RD (2002) Sense and sensibility in the regulation of voltage-gated Ca(2+) channels. Trends Neurosci 25:489–491

    Article  PubMed  CAS  Google Scholar 

  56. Fomina AF, Nowycky MC (1999) A current activated on depletion of intracellular Ca2+ stores can regulate exocytosis in adrenal chromaffin cells. J Neurosci 19:3711–3722

    PubMed  CAS  Google Scholar 

  57. Pan CY, Fox AP (2000) Rundown of secretion after depletion of intracellular calcium stores in bovine adrenal chromaffin cells. J Neurochem 75:1132–1139

    Article  PubMed  CAS  Google Scholar 

  58. McCue HV, Haynes LP, Burgoyne RD (2010) The diversity of calcium sensor proteins in the regulation of neuronal function. Cold Spring Harb Perspect Biol 2:1–20

    Article  Google Scholar 

  59. Krebs J, Heizmann CW (2007) Calcium-binding proteins and the EF-hand principle. pp 51–93, in Calcium: a matter of life or death, edited by Joachim Krebs, Marek Michalak. 1st ed. Amsterdam ; Oxford : Elsevier, 2007. (Series: New comprehensive biochemistry; v. 41)

    Chapter  Google Scholar 

  60. McFerran BW, Weiss JL, Burgoyne RD (1999) Neuronal Ca(2+) sensor 1. Characterization of the myristoylated protein, its cellular effects in permeabilized adrenal chromaffin cells, Ca(2+)-independent membrane association, and interaction with binding proteins, suggesting a role in rapid Ca(2+) signal transduction. J Biol Chem 274:30258–30265

    Article  PubMed  CAS  Google Scholar 

  61. Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8:182–193

    Article  PubMed  CAS  Google Scholar 

  62. Burgoyne RD, Weiss JL (2001) The neuronal calcium sensor family of Ca2+−binding proteins. Biochem J 353:1–12

    Article  PubMed  CAS  Google Scholar 

  63. Lim S, Strahl T, Thorner J, Ames JB (2011) Structure of a Ca2+−myristoyl switch protein that controls activation of a phosphatidylinositol 4-kinase in fission yeast. J Biol Chem 286:12565–12577

    Article  PubMed  CAS  Google Scholar 

  64. Wykes RCE, Bauer CS, Khan SU, Weiss JL, Seward EP (2007) Differential regulation of endogenous N- and P/Q-type Ca2+ channel inactivation by Ca2+/calmodulin impacts on their ability to support exocytosis in chromaffin cells. J Neurosci 27:5236–5248

    Article  PubMed  CAS  Google Scholar 

  65. Chen M-L, Chen Y-C, Peng IW, Kang R-L, Wu M-P, Cheng P-W, Shih P-Y, Lu L-L, Yang C-C, Pan C-Y (2008) Ca2+ binding protein-1 inhibits Ca2+ currents and exocytosis in bovine chromaffin cells. J Biomed Sci 15:169–181

    Article  PubMed  CAS  Google Scholar 

  66. Shih P-Y, Lin C-L, Cheng P-W, Liao J-H, Pan C-Y (2009) Calneuron I inhibits Ca(2+) channel activity in bovine chromaffin cells. Biochem Biophys Res Commun 388:549–553

    Article  PubMed  CAS  Google Scholar 

  67. Forsberg EJ, Rojas E, Pollard HB (1986) Muscarinic receptor enhancement of nicotine-induced catecholamine secretion may be mediated by phosphoinositide metabolism in bovine adrenal chromaffin cells. J Biol Chem 261:4915–4920

    PubMed  CAS  Google Scholar 

  68. Huh YH, Yoo JA, Bahk SJ, Yoo SH (2005) Distribution profile of inositol 1,4,5-trisphosphate receptor isoforms in adrenal chromaffin cells. FEBS Lett 579:2597–2603

    Article  PubMed  CAS  Google Scholar 

  69. Hui H, McHugh D, Hannan M, Zeng F, Xu S-Z, Khan S-U-H, Levenson R, Beech DJ, Weiss JL (2006) Calcium-sensing mechanism in TRPC5 channels contributing to retardation of neurite outgrowth. J Physiol 572:165–172

    PubMed  CAS  Google Scholar 

  70. Bennett DL, Bootman MD, Berridge MJ, Cheek TR (1998) Ca2+ entry into PC12 cells initiated by ryanodine receptors or inositol 1,4,5-trisphosphate receptors. Biochem J 329(Pt 2):349–357

    PubMed  CAS  Google Scholar 

  71. Santodomingo J, Vay L, Camacho M, Hernandez-Sanmiguel E, Fonteriz RI, Lobaton CD, Montero M, Moreno A, Alvarez J (2008) Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules. Eur J Neurosci 28:1265–1274

    Article  PubMed  Google Scholar 

  72. Duman JG, Chen L, Hille B (2008) Calcium transport mechanisms of PC12 cells. J Gen Physiol 131:307–323

    Article  PubMed  CAS  Google Scholar 

  73. Torregrosa-Hetland CJ, Villanueva J, Lopez-Font I, Garcia-Martinez V, Gil A, Gonzalez-Velez V, Segura J, Viniegra S, Gutierrez LM (2010) Association of SNAREs and calcium channels with the borders of cytoskeletal cages organizes the secretory machinery in chromaffin cells. Cell Mol Neurobiol 30:1315–1319

    Article  PubMed  CAS  Google Scholar 

  74. de Wit H (2010) Molecular mechanism of secretory vesicle docking. Biochem Soc Trans 38:192–198

    Article  PubMed  Google Scholar 

  75. Alvarez YD, Marengo FD (2011) The immediately releasable vesicle pool: highly coupled secretion in chromaffin and other neuroendocrine cells. J Neurochem 116:155–163

    Article  PubMed  CAS  Google Scholar 

  76. Burgoyne RD, Morgan A (1998) Calcium sensors in regulated exocytosis. Cell Calcium 24:367–376

    Article  PubMed  CAS  Google Scholar 

  77. Burgoyne RD, Morgan A (2003) Secretory granule exocytosis. Physiol Rev 83:581–632

    PubMed  CAS  Google Scholar 

  78. Burgoyne RD, Morgan A (2007) Membrane trafficking: three steps to fusion. Curr Biol 17:255–258

    Article  Google Scholar 

  79. Tortora GJ, Derrickson BH (2009) Principles of Anatomy and Physiology. 12th Edition, John Wiley and Sons, Hoboken, New Jersey

    Google Scholar 

  80. Kao LS, Schneider AS (1986) Calcium mobilization and catecholamine secretion in adrenal chromaffin cells. A Quin-2 fluorescence study. J Biol Chem 261:4881–4888

    PubMed  CAS  Google Scholar 

  81. Zaika OL, Pochynyuk OM, Kostyuk PG, Yavorskaya EN, Lukyanetz EA (2004) Acetylcholine-induced calcium signalling in adrenaline- and noradrenaline-containing adrenal chromaffin cells. Arch Biochem Biophys 424:23–32

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This author is very grateful to Chris North for his help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie L. Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Weiss, J.L. (2012). Ca2+ Signaling Mechanisms in Bovine Adrenal Chromaffin Cells. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_38

Download citation

Publish with us

Policies and ethics