Skip to main content

Part of the book series: ERCOFTAC Series ((ERCO,volume 18))

Abstract

A numerical scheme for computing compressible multi-component flows is examined. The numerical approach is based on a mathematical model that considers interfaces between fluids as numerically diffused zones. The hyperbolic problem is tackled using a high-resolution HLLC scheme on a fixed Eulerian mesh. The scheme for the non-conservative terms is derived to fulfill the interface condition. The results are demonstrated for several one and two-dimensional test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125(1), 150–160 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baer, M.R., Nunziato, J.W.: A two-phase mixture theory for deflagration to detonation transition in granular materials. Int. J. Multiph. Flow 181, 577–616 (1986)

    Google Scholar 

  3. Brennen, C.E.: Fundamentals of Multiphase Flow. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  4. Davis, S.F. Simplified second-order Godunov-type methods. SIAM J. Sci. Stat. Comput. 9(3), 445–473 (1988)

    Article  MATH  Google Scholar 

  5. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method). J. Comput. Phys. 152(2), 457–492 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Glimm, J., Grove, J.W., Li, X.L., Shyue, K.-M., Zeng, Y., Zhang, Q.: Three-dimensional front tracking. SIAM J. Sci. Comput. 19(3), 703–727 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Article  MATH  Google Scholar 

  8. Lallemand, M.-H., Saurel, R.: Pressure relaxation procedures for multiphase compressible flows. Technical Report 4038, INRIA (2000)

    Google Scholar 

  9. Li, Q., Feng, J.H., Cai, T.M., Hu, C.B.: Difference scheme for two-phase flow. Appl. Math. Mech. Engl. Ed. 25(5), 536–545 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Murrone, A., Guillard, H.: A five equation reduced model for compressible two phase flow problems. J. Comput. Phys. 202(2), 664–698 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Osher, S., Fedkiw, R.P.: Level set methods: an overview and some recent results. J. Comput. Phys. 169(2), 463–502 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ransom, V.H.: Faucet Flow, Oscillating Manometer, and Expulsion of Steam by Sub Cooled Water. Numerical Benchmark Tests, Multiphase Science and Technology, vol. 3 (1987)

    Google Scholar 

  13. Saurel, R., Abgrall, R.: A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150(2), 425–467 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Saurel, R., Lemetayer, O.: A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J. Fluid Mech. 431, 239–271 (2001)

    Article  MATH  Google Scholar 

  15. Saurel, R., Gavrilyuk, S., Renaud, F.: A multiphase model with internal degrees of freedom: application to shock-bubble interaction. J. Fluid Mech. 495, 283–321 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Saurel, R., Petitpas, F., Abgrall, R.: Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech. 607, 313–350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sethian, J.A.: Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J. Comput. Phys. 169(2), 503–555 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shyue, K.M.: An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142(1), 208–242 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  20. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (1999)

    MATH  Google Scholar 

  21. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Int. J. Numer. Methods Fluids 4(1), 25–34 (1994)

    MATH  Google Scholar 

  22. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej F. Nowakowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ghangir, F., Nowakowski, A.F. (2012). Computing the Evolution of Interfaces Using Multi-component Flow Equations. In: Nicolleau, F., Cambon, C., Redondo, JM., Vassilicos, J., Reeks, M., Nowakowski, A. (eds) New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence. ERCOFTAC Series, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2506-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2506-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2505-8

  • Online ISBN: 978-94-007-2506-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics