Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 383))

  • 1208 Accesses

Abstract

Celestial bodies and the entire universe itself offer many ways to test theories of gravitation. General relativity, the well-known basis of current cosmology, can explain a wide spectrum of phenomena from the deflection of light by the Sun to the Hubble law of redshifts within the Friedmann model. At the same time it is a non-quantum theory and still requires testing in strong gravity. As we saw, a quite different approach, the relativistic field theory, is also interesting as it aims to describe the gravitational interaction in the same way as other fundamental forces are treated in physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is important to note that to calculate the loss of energy (6.12) one should use an expression for the energy-momentum ā€œpseudotensorā€ of the gravitational field, not defined uniquely in general relativity. This has originated a long discussion about the reality of gravitational waves and their ability to carry energy in general relativity.

  2. 2.

    In principle, there is also another small effect, related to measuring the shape of the orbit: the rotation of the orbiting body contributes to the equation of motion (Eq. (6.21)).

  3. 3.

    Already Boris Komberg (1968) proposed a binary system as a quasar model.

  4. 4.

    This argument is a precise analogue to that of the classical radius of electron R e=e 2/m e c 2, following from the requirement that the electric field energy E (fe)=e 2/2R 0 should be less than the electronā€™s rest-mass energy m e c 2.

  5. 5.

    Calculation of K(3, FG) was done by A.Ā Raikov (details in Oschepkov and Raikov 1995).

  6. 6.

    Controversial claims about possible detections of gravitational signals by Nautilus and Explorer antennas (Astone et al. 2002, 2006), if confirmed, require a new analysis of the potential sources of gravitational waves (Coccia et al. 2004).

  7. 7.

    An expansion in Newtonian absolute space would imply one privileged point where the celestial body must remain at rest. Therefore, if one observes expansion of matter and has grounds to think that it is a universal phenomenon, one cannot simultaneously accept absolute space and the no-centre principle. In the modern paradigm the concept of no centre results from the overall expansion of space together with the uniform substance.

References

  • Abramowicz, M., Kluzniak, W., Lasota, J.-P.: No observational proof of the black hole event horizon. Astron. Astrophys. 396, L31 (2002)

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Adelberger, E.G., Heckel, B.R., Nelson, A.E.: Tests of the gravitational inverse-square law. Annu. Rev. Nucl. Part. Sci. 53, 77 (2003)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Aglietta, M., Badino, G., Bologna, G., et al.: On the event observed in the Mont Blanc Underground Neutrino Observatory during the occurrence of supernova 1987a. Europhys. Lett. 3, 1315 (1987)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Amaldi, E., Bonifazi, P., Castellano, M., et al.: Data recorded by the Rome room temperature gravitational wave antenna, during the supernova SN 1987a in the Large Magellanic Cloud. Europhys. Lett. 3, 1325 (1987)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Amelino-Camelia, G., Smolin, L.: Prospects for constraining quantum gravity dispersion with near term observations. Phys. Rev. D 80, 084017 (2009)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Amelino-Camelia, G., Lammerzahl, C., Macias, A., Muller, H.: The search for quantum gravity signals. In: Gravitation and Cosmology: 2nd Mexican Meeting on Mathematical and Experimental Physics. AIP Conf. Proc., vol. 758, p. 30 (2005)

    Google ScholarĀ 

  • Astone, P., Babusci, D., Bassan, M., et al.: Study of the coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in the year 2001. Class. Quantum Gravity 19, 5449 (2002)

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Astone, P., Babusci, D., Ballantini, R., et al.: The 2003 run of the Explorer-Nautilus gravitational wave experiment. Class. Quantum Gravity 23, S169 (2006)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Babadzhanyants, M.K., Belokon, E.T.: Optical manifestations of superluminal expansion of components belonging to the millisecond radio structure in the quasar 3C 345. Astrophysics 23, 639 (1985)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Babadzhanyants, M.K., Belokon, E.T.: 3C 120: Connection between the optical variability and superluminal components of the millisecond radio structure. Astrophysics 27, 588 (1987)

    ADSĀ  Google ScholarĀ 

  • Baryshev, Yu.V.: On the gravitational radiation of the binary system with the pulsar PSR1913+16. Astrophysics 18, 93 (1982)

    ArticleĀ  Google ScholarĀ 

  • Baryshev, Yu.V.: Conservation laws and equations of motion in the field gravitation theory. Vest. Leningr. Univ. Ser. 1 2, 80 (1988)

    Google ScholarĀ 

  • Baryshev, Yu.V.: Pulsation of supermassive star in the tensor field gravitation theory. In: Variability of Blazars, p. 52. Cambridge Univ. Press, Cambridge (1992a)

    Google ScholarĀ 

  • Baryshev, Yu.V.: On a possibility of scalar gravitational wave detection from the binary pulsar PSR1913+16. In: Coccia, E., Pizzella, G., Ronga, F. (eds.) Proc. of the First Amaldi Conference on Gravitational Wave Experiments, p. 251. World Sci. Publ. Co., Singapore (1995). gr-qc/9911081

    Google ScholarĀ 

  • Baryshev, Yu.V.: Signals from SN1987A in Amaldi-Weber antennas as possible detection of scalar gravitational waves. Astrophysics 40, 377 (1997)

    ArticleĀ  Google ScholarĀ 

  • Baryshev, Yu.V.: Translational motion of rotating bodies and tests of the equivalence principle. Gravit. Cosmol. 8, 232 (2002)

    MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Baryshev, Yu.V., Paturel, G.: Statistics of the detection rates for tensor and scalar gravitational waves from the local galaxy universe. Astron. Astrophys. 371, 378 (2001)

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Baryshev, Yu.V., Raikov, A.A.: A quantum limitation on the gravitational interaction. In: Saamokhin, A.P., Rcheulishvili, G.L. (eds.) Proc. of the XVII Int. Workshop Problems on High Energy Physics and Field Theory, Protvino (1995)

    Google ScholarĀ 

  • Baryshev, Yu.V., Gubanov, A.G., Raikov, A.A.: On possibility of observational testing of the frequency dependence of gravitational bending of light. Gravitation 2, 72 (1996a)

    Google ScholarĀ 

  • Baryshev, Yu.V., Raikov, A.A., Tron, A.A.: Microwave background radiation and cosmological large numbers. Astron. Astrophys. Trans. 10, 135 (1996b)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Bekenstein, J.D.: The modified Newtonian dynamicsā€”MONDā€”and its implications for new physics. Contemp. Phys. 47, 387 (2006). astro-ph/0701848 (2007)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Belokon, E.T.: Optical variability of the quasar 3C273 and superluminal motion in its milliarcsecond radio jet. Sov. Astron. 35, 1 (1991)

    ADSĀ  Google ScholarĀ 

  • Bertolami, O., de Matos, C.J., Grenouilleau, J.C., Minster, O., VolontĆ©, S.: Perspectives in fundamental physics in space. Acta Astronaut. 59, 490 (2006b)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Binney, J.: On the impossibility of advection dominated accretion (2003). astro-ph/0308171

  • Bisnovatyi-Kogan, G.S., Lovelace, R.V.E.: Magnetic field limitations on advection-dominated flows. Astrophys. J. 529, 978 (2000)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Chand, H., Srianand, R., Petitjean, P., Aracil, B.: Probing the cosmological variation of the fine-structure constant: Results based on VLT-UVES sample. Astron. Astrophys. 417, 853 (2004)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Chapline, G.: Dark energy stars (2005). astro-ph/0503200

  • Coccia, E., Dubath, F., Maggiore, M.: On the possible sources of gravitational wave bursts detectable today. Phys. Rev. D 70, 084010 (2004)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Damour, T., Taylor, J.: On the orbital period change of the binary pulsar PSR 1913+16. Astrophys. J. 366, 501 (1991)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Davis, T.M., Lineweaver, C.H.: Expanding confusion: Common misconceptions of cosmological horizons and the superluminal expansion of the universe. Publ. Astron. Soc. Aust. 21, 97 (2004)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Deller, A.T., Bailes, M., Tingay, S.J.: Implications of a VLBI distance to the double pulsar J0737-3039A/B. Science 323, 132 (2009)

    ArticleĀ  Google ScholarĀ 

  • Dymnikova, I.: The cosmological term as a source of mass. Class. Quantum Gravity 19, 725 (2002)

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Einstein, A.: Die Feldgleichungen der Gravitation. Preuss. Akad. Wiss, Berlin (1915), Sitzber., 844

    Google ScholarĀ 

  • Einstein, A.: Die Grundlagen der allgemeinen RelativitƤtstheorie. Ann. Phys. 49, 769 (1916)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Falcke, H., Melia, F., Agol, E.: Viewing the shadow of the black hole in the galactic center. Astrophys. J. 528, L13 (2000)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Fowler, W.: Massive stars, relativistic polytrops and gravitational radiation. Rev. Mod. Phys. 36, 545 (1964)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Fowler, W.: The stability of supermassive stars. Astrophys. J. 144, 180 (1966)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Haugan, M.P., LƤmmerzahl, C.: Principles of equivalence: Their role in gravitation physics and experiments that test them. Lect. Notes Phys. 562, 195 (2001)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Hoyle, F., Fowler, W.: On the nature of strong radio sources. Mon. Not. R. Astron. Soc. 125, 169 (1963)

    ADSĀ  Google ScholarĀ 

  • Kapner, D.J., Cook, T.S., Adelberger, E.G., et al.: Tests of the gravitational inverse-square law below the dark-energy length scale. Phys. Rev. Lett. 98(2), 021101 (2007)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Komberg, B.: A binary system as a quasar model. Sov. Astron. 11, 727 (1968)

    ADSĀ  Google ScholarĀ 

  • Marscher, A., Jorstad, S.G., Larionov, V.M., Aller, M.F., LƤhteenmƤki, A.: Multi-frequency observations of gamma-ray blazar 1633+382. J. Astrophys. Astron. 41J (2011)

    Google ScholarĀ 

  • Mazur, P., Mottola, E.: Gravitational vacuum condensate stars. Proc. Natl. Acad. Sci. USA 111, 9545 (2004)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Milgrom, M.: A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365 (1983)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Mitra, A.: Non-occurence of trapped surfaces and black holes in spherical gravitational collapse. Found. Phys. Lett. 13, 543 (2000)

    ArticleĀ  Google ScholarĀ 

  • Mitra, A.: Radiation pressure supported stars in Einstein gravity: Eternally collapsing objects. Mon. Not. R. Astron. Soc. 369, 492 (2006)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Moshinsky, M.: On the interacting Birkhoffā€™s gravitational field with the electromagnetic and pair fields. Phys. Rev. 80, 514 (1950)

    ArticleĀ  MathSciNetĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Narayan, R., Quataert, E.: Black hole accretion. Science 307, 77 (2005)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Narayan, R., Garcia, M.R., McClintock, J.E.: Advection-dominated accretion and black hole event horizons. Astrophys. J. 478, L79 (1997)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Nesvizhevsky, V.V., Protasov, K.V.: Constrains on non-Newtonian gravity from the experiment on neutron quantum states in the Earthā€™s gravitational field. Class. Quantum Gravity 21, 4557 (2004)

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Nesvizhevsky, V.V., Borner, H.G., Petukhov, A.K., et al.: Quantum states of neutrons in the Earthā€™s gravitational field. Nature 415, 297 (2002)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Okun, L.B., Selivanov, K.G., Telegdi, V.L.: On the interpretation of the redshift in a static gravitational field. Am. J. Phys. 68, 15 (2000)

    ArticleĀ  Google ScholarĀ 

  • Oschepkov, S.A., Raikov, A.A.: Post-Newtonian polytropes in alternative gravity theories. Gravitation 1, 44 (1995)

    Google ScholarĀ 

  • Paczynski, B.: Gamma-ray burstā€”supernova relation. In: Livio, M., Panagia, N., Sahu, K. (eds.) Proc. of the STSI 1999 May Symposium (13): ā€œSupernovae and Gamma Ray Bursts; The Largest Explosions Since the Big Bangā€, p. 1. Cambridge University Press, Cambridge (2001)

    Google ScholarĀ 

  • Paturel, G., Baryshev, Yu.V.: Prediction of the sidereal time distribution of gravitational wave events for different detectors. Astrophys. J. 592, L99 (2003a)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Paturel, G., Baryshev, Yu.V.: Sidereal time analysis as a tool for the study of the space distribution of sources of gravitational waves. Astron. Astrophys. 398, 377 (2003b)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Pynzar, A.V.: Correlation between the scattering parameters for pulsars and the emission measure of the galactic background. Astron. Rep. 39, 406 (1995)

    ADSĀ  Google ScholarĀ 

  • Ragazzoni, R., Turatto, M., Gaessler, W.: Lack of observational evidence for quantum structure of space-time at Planck scales. Astrophys. J. 587, L1 (2003)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Robertson, S.L., Leiter, D.J.: Evidence for intrinsic magnetic moments in black hole candidates. Astrophys. J. 565, 447 (2002)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Robertson, S.L., Leiter, D.J.: On intrinsic magnetic moments in black hole candidates. Astrophys. J. Lett. 596, L203 (2003)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Robertson, S.L., Leiter, D.J.: On the origin of the universal radio-X-ray luminocity correlation in black hole candidates. Astrophys. J. Lett. 596, L203 (2004)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Robertson, S.L., Leiter, D.J.: The magnetospheric eternally collapsing object (MECO) model of galactic black hole candidates and active galactic nuclei. In: Kreitler, P.V. (ed.) New Developments in Black Hole Reseach. Nova Science, New York (2005). astro-ph/0602453

    Google ScholarĀ 

  • Schild, R.E., Leiter, D.J., Robertson, S.L.: Observations supporting the existence of an intrinsic magnetic moment inside the central compact object within the quasar Q0957+561. Astron. J. 132, 420 (2006)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • SillanpƤƤ, A., Takalo, L.O., Pursimo, T., et al.: Confirmation of the 12-year optical outburst cycle in blazar OJ 287. Astron. Astrophys. 305, L17 (1996)

    ADSĀ  Google ScholarĀ 

  • Sokolov, V.V.: The properties of the strong static field of a collapsar in gravidynamics. Astrophys. Space Sci. 197, 179 (1992c)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Sokolov, V.V.: Identifications of the Gamma-bursts: Optical transients and host galaxies. Dissertation on doctor of physical-mathematical sciences degree, SAO RAS (2002) (in Russian)

    Google ScholarĀ 

  • Sokolov, V.V., Bisnovatyi-Kogan, G.S., Kurt, V.G., Gnedin, Yu.N., Baryshev, Yu.V.: Observational constraints on the angular and spectral distributions of photons in gamma-ray burst sources. Astron. Rep. 50, 612 (2006)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Tanyukhin, I.M.: Energy of gravitational field and models of neutron stars. Diplom work, St.-Petersburg University (1995) (in Russian)

    Google ScholarĀ 

  • Unzicker, A.: Why do we still believe in Newtonā€™s Law? Facts, myths and methods in gravitational physics (2007). gr-qc/0702009

  • Valtonen, M.J., Lehto, H.J.: Outbursts in OJ287: A new test for the general theory of relativity. Astrophys. J. 481, L5 (1997)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Valtonen, M.J., Lehto, H.J., Nilsson, K., et al.: A massive binary black-hole system in OJ287 and a test of general relativity. Nature 452, 851 (2008a)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Wagner, R.: Exploring quantum gravity with very-high-energy gamma-ray instrumentsā€”Prospects and limitations. AIP Conf. Proc. 1112, 187 (2009)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Weisberg, J.M., Taylor, J.H.: General relativistic geodetic spin precession in binary pulsar B1913+16: Mapping the emission beam in two dimensions. Astrophys. J. 576, 942 (2002)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Weisberg, J.M., Nice, D.J., Taylor, J.H.: Timing measurements of the relativistic binary pulsar PSR B1913+16. Astrophys. J. 722, 1030 (2010)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Westphal, A., Abele, H., Baebler, S., et al.: A quantum mechanical description of the experiment on the observation of gravitationally bound states. Eur. Phys. J. C 51, 367 (2007)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Will, C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1993)

    BookĀ  MATHĀ  Google ScholarĀ 

  • Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Relativ. 9, 3 (2005)

    ADSĀ  Google ScholarĀ 

  • Wilms, J., Reynolds, C., Begelman, M., et al.: XMM-EPIC observation of MCG-6-30-15: Direct evidence for the extraction of energy from a spinning black hole? Mon. Not. R. Astron. Soc. 328, L27 (2001)

    ArticleĀ  ADSĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurij Baryshev .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Baryshev, Y., Teerikorpi, P. (2012). Predictions of Gravity Theories. In: Fundamental Questions of Practical Cosmology. Astrophysics and Space Science Library, vol 383. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2379-5_6

Download citation

Publish with us

Policies and ethics