Skip to main content

Bacterial Degradation of Aromatic Xenobiotic Compounds: An Overview on Metabolic Pathways and Molecular Approaches

  • Chapter
  • First Online:
Microorganisms in Environmental Management

Abstract

Environmental contamination due to xenobiotic compounds is mainly due to their large-scale manufacturing, processing and handling. Owing to long-term persistence, and acute toxic and teratogenic effects of these compounds, remediation of contaminated environment is necessary. Due to its capability to degrade toxic xenobiotic compounds in a safe and cost-effective manner, interest in bioremediation using microorganisms, particularly bacteria and fungi, has increased in the past two decades. In order to survive and grow in toxic environments, bacteria have evolved a complex range of mechanisms at the cellular and molecular levels, including catabolic enzymes, membranes, protein synthesis machinery, responsible genes etc. However, there are several factors which may limit the biodegradation of xenobiotic compounds. For the development of successful and improved bioremediation processes, understanding of the biochemical and molecular aspects of xenobiotics biodegradation is required. The present chapter aims to provide an overview of the metabolic pathways and genetic adaptation in bacteria for degradation of aromatic xenobiotics. Also, recent advances made based on these aspects to overcome certain limitations in bacterial aromatics metabolism are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • W. Arber, FEMS Microbiol. Rev. 24, 1–7 (2000)

    Article  PubMed  CAS  Google Scholar 

  • B.D. Aronson, M. Levinthal, R.L. Somerville, J. Bacteriol. 171, 5503–5511 (1989)

    PubMed  CAS  Google Scholar 

  • S.M. Bamforth, I. Singleton, J. Chem. Technol. Biotechnol. 80, 723–736 (2005)

    Article  CAS  Google Scholar 

  • D. Barriault, M. Sylvestre, J. Biol. Chem. 279, 47480–47488 (2004)

    Article  PubMed  CAS  Google Scholar 

  • L. Boe, Mol. Microbiol. 4, 597–601 (1990)

    Article  PubMed  CAS  Google Scholar 

  • C. Bruhn, R.C. Bayly, H.J. Knackmuss, Arch. Microbiol. 150, 171–177 (1988)

    Article  CAS  Google Scholar 

  • R.S. Burlage, S.W. Hooper, G.S. Sayler, Appl. Environ. Microbiol. 55, 1323–1328 (1989)

    PubMed  CAS  Google Scholar 

  • R.S. Burlage, L.A. Bemis, A.C. Layton, G.S. Sayler, F. Larimer, J. Bacteriol. 172, 6818–6825 (1990)

    PubMed  CAS  Google Scholar 

  • K.A. Canada, S. Iwashita, H. Shim, T.K. Wood, J. Bacteriol. 184, 344–349 (2002)

    Article  PubMed  CAS  Google Scholar 

  • C. Cerniglia, Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3, 351–368 (1992)

    Article  CAS  Google Scholar 

  • Y.X. Chen, H. Liu, L.C. Zhu, Y.F. Jin, Microbiologia 73, 802–809 (2004)

    Google Scholar 

  • D. Dean-Ross, J. Moody, J. Freeman, D. Doerge, C. Cerniglia, FEMS Microbiol. Lett. 204, 205–211 (2001)

    Article  PubMed  CAS  Google Scholar 

  • J.J. Dennis, Curr. Opin. Biotechnol. 16, 291–298 (2005)

    Article  PubMed  CAS  Google Scholar 

  • H. Feitkenhauer, R. Muller, H. Markl, Biodegradation 14, 367–372 (2003)

    Article  PubMed  CAS  Google Scholar 

  • A. Ferrandez, B. Minambres, B. Garcia, E.R. Olivera, J.M. Luengo, J.L. Garcia, E. Diaz, J. Biol. Chem. 273, 2594–25986 (1998)

    Article  Google Scholar 

  • D. Ghosal, I.S. You, Gene 83, 225–232 (1989)

    Article  PubMed  CAS  Google Scholar 

  • N. Gulensory, P. Alvarez, Biodegradation 10, 331–340 (1999)

    Article  Google Scholar 

  • S. Harayama, M. Rekik, A. Bairoch, E.L. Neidle, L.N. Ornston, J. Bacteriol. 173, 7540–7548 (1991)

    PubMed  CAS  Google Scholar 

  • M.A. Haro, V. de Lorenzo, J. Biotechnol. 85, 103–113 (2001)

    Article  PubMed  CAS  Google Scholar 

  • R.A. Haugland, U.M.X. Sangodkar, A.M. Chakrabarty, Mol. Gen. Genet. 220, 222–228 (1990)

    Article  PubMed  CAS  Google Scholar 

  • H.J. Heipieper, R. Diefenbach, H. Keweloh, Appl. Environ. Microbiol. 58, 1847–1852 (1992)

    PubMed  CAS  Google Scholar 

  • H. Hermann, C. Muller, I. Schmidt, J. Mahnke, L. Petruschka, K. Hahnke, Mol. Gen. Genet. 247, 240–246 (1995)

    Article  Google Scholar 

  • Y. Hrywna, T.V. Tsoi, O.V. Maltseva, J.F. Quensen, J.M. Tiedje, Appl. Environ. Microbiol. 65, 2163–2169 (1999)

    PubMed  CAS  Google Scholar 

  • B. Kaphammer, J.J. Kukor, R.H. Olsen, J. Bacteriol. 172, 2280–2286 (1990)

    PubMed  CAS  Google Scholar 

  • B.G. Keenan, T. Leungsakul, B.F. Smets, T.K. Wood, Appl. Environ. Microbiol. 70, 3222–3231 (2004)

    Article  PubMed  CAS  Google Scholar 

  • I. Kelley, J.P. Freeman, C.E. Cerniglia, Biodegradation 1, 283–290 (1990)

    Article  PubMed  CAS  Google Scholar 

  • V.G. Khomenkov, A.B. Shevelev, V.G. Zhukov, N.A. Zagustina, A.M. Bezborodov, V.O. Popov, Appl. Biochem. Microbiol. 44, 117–135 (2008)

    Article  CAS  Google Scholar 

  • N. Kimura, A. Nishi, M. Goto, K. Furukawa, J. Bacteriol. 179, 3936–3943 (1997)

    PubMed  CAS  Google Scholar 

  • J. Lee, J. Roh, H. Kim, Biotechnol. Bioeng. 43, 1146–1152 (1993)

    Article  Google Scholar 

  • J. Lee, K. Jung, S. Choi, H. Kim, Appl. Environ. Microbiol. 61, 2211–2217 (1995)

    PubMed  CAS  Google Scholar 

  • T. Leungsakul, G.R. Johnson, T.K. Wood, Appl. Environ. Microbiol. 72, 3933–3939 (2006)

    Article  PubMed  CAS  Google Scholar 

  • C. Liu, X. Huang, Front. Environ. Sci. Eng. China 2, 452–460 (2008)

    Article  Google Scholar 

  • J.M. Luego, J.L. Garcia, E.R. Olivera, Mol. Microbiol. 39, 1439–1442 (2001)

    Google Scholar 

  • B. Mahanty, K. Pakshirajan, V.V. Dasu, Bioresour. Technol. 99, 2694–2698 (2008)

    Article  PubMed  CAS  Google Scholar 

  • A. Markus, D. Krekel, F. Lingens, J. Biol. Chem. 261, 12883–12888 (1986)

    PubMed  CAS  Google Scholar 

  • P. Meulien, R.G. Downing, P. Broda, Mol. Gen. Genet. 184, 97–101 (1981)

    Article  PubMed  CAS  Google Scholar 

  • A. Meyer, A. Schmid, M. Held, A.H. Westphal, M. Rothlisberger, H.P.E. Kohler, W.J.H. van Berkel, B. Witholt, J. Biol. Chem. 277, 5575–5582 (2002)

    Article  PubMed  CAS  Google Scholar 

  • K.H. Mitchell, J.M. Studts, B.J. Fox, Biochemistry 41, 3176–3188 (2002)

    Article  PubMed  CAS  Google Scholar 

  • M.E. Mohamed, W. Ismail, J. Heider, G. Fuchs, Arch. Microbiol. 178, 180–192 (2002)

    Article  CAS  Google Scholar 

  • H. Mokross, E. Schmidt, W. Reineke, FEMS Microbiol. Lett. 71, 179–186 (1990)

    Article  CAS  Google Scholar 

  • M.R. Monti, A.M. Smania, G. Fabro, M.E. Alvarez, C.E. Argarana, Appl. Environ. Microbiol. 71, 8864–8872 (2005)

    Article  PubMed  CAS  Google Scholar 

  • A. Mooney, N.D. O’Leary, A.D.W. Dobson, Appl. Environ. Microbiol. 72, 1302–1309 (2006)

    Article  PubMed  CAS  Google Scholar 

  • C. Nakai, K. Horiike, S. Kuramitsu, H. Kagamilyama, M. Nozaki, J. Biol. Chem. 265, 660–665 (1990)

    PubMed  CAS  Google Scholar 

  • P. Nilotpala, A. Ingle, Indian J. Microbiol. 43, 267–269 (2003)

    Google Scholar 

  • H. Nojiri, M. Shintani, T. Omori, Appl. Microbiol. Biotechnol. 64, 154–174 (2004)

    Article  PubMed  CAS  Google Scholar 

  • K.C. O’Connor, C.M. Buckley, S. Hartmans, A.D.W. Dobson, Appl. Environ. Microbiol. 61, 544–548 (1995)

    PubMed  Google Scholar 

  • K.E. O’Connor, W. Duetz, B. Wind, A.D.W. Dobson, Appl. Environ. Microbiol. 62, 3594–3599 (1996)

    PubMed  Google Scholar 

  • N.D. O’Leary, K.E. O’Connor, W. Deutz, A.D.W. Dobson, Microbiology 147, 973–979 (2001)

    PubMed  Google Scholar 

  • A. Okuta, K. Ohnishi, S. Harayama, Appl. Environ. Microbiol. 70, 1804–1810 (2004)

    Article  PubMed  CAS  Google Scholar 

  • R.H. Oltmanns, H.G. Rast, W. Reineke, Appl. Microbiol. Biotechnol. 28, 609–616 (1988)

    Article  CAS  Google Scholar 

  • S. Panke, B. Witholt, A. Schmid, M.G. Wubbolts, Appl. Environ. Microbiol. 64, 2032–2043 (1998)

    PubMed  CAS  Google Scholar 

  • J.H. Paul, L. Cazares, J. Thurmond, Appl. Environ. Microbiol. 56, 1963–1966 (1990)

    PubMed  CAS  Google Scholar 

  • E.J. Perkins, M. Gordon, P. Caceres, P.F. Lurquin, J. Bacteriol. 172, 2351–2359 (1990)

    PubMed  CAS  Google Scholar 

  • D.H. Pieper, Appl. Microbiol. Biotechnol. 67, 170–191 (2005)

    Article  PubMed  CAS  Google Scholar 

  • K. Pollmann, V. Wray, H.-J. Hecht, D.H. Pieper, Microbiology 149, 903–913 (2003)

    Article  PubMed  CAS  Google Scholar 

  • J.L. Ramos, A. Stolz, W. Reineke, K.N. Timmis, Proc. Natl. Acad. Sci. 83, 8467–8471 (1986)

    Article  PubMed  CAS  Google Scholar 

  • M. Ramos-González, P. Godoy, M. Alaminos, A. Ben-Bassat, J. Ramos, Appl. Environ. Microbiol. 67, 4338–4341 (2001)

    Article  PubMed  Google Scholar 

  • P.A. Rochelle, J.C. Fry, M.J. Day, J. Gen. Microbiol. 135, 409–424 (1989)

    PubMed  CAS  Google Scholar 

  • L. Rui, Y.M. Kwon, A. Fishman, K.F. Reardon, T.K. Wood, Appl. Environ. Microbiol. 70, 3246–3252 (2004)

    Article  PubMed  CAS  Google Scholar 

  • L. Rui, K.F. Reardon, T.K. Wood, Appl. Microbiol. Biotechnol. 66, 422–429 (2005)

    Article  PubMed  CAS  Google Scholar 

  • U.M.X. Sangodkar, P.J. Chapman, A.M. Chakrabarty, Gene 71, 267–277 (1988)

    Article  PubMed  CAS  Google Scholar 

  • P.M. Santos, L. Leoni, I. Di Bartolo, E. Zennaro, Res. Microbiol. 153, 527–536 (2002)

    Article  PubMed  CAS  Google Scholar 

  • S.J. Sarma, K. Pakshirajan, B. Mahanty, J. Chem. Technol. Biotechnol. (2011). doi: 10.1002/jctb.2513

    Google Scholar 

  • D.J. Saye, A. Ogunseitan, G.S. Sayler, R.V. Miller, Appl. Environ. Microbiol. 56, 140–145 (1990)

    PubMed  CAS  Google Scholar 

  • A. Schreiner, K. Fuchs, F. Lottspeich, H. Poth, F. Lingens, J. Gen. Microbiol. 137, 2041–2048 (1991)

    PubMed  CAS  Google Scholar 

  • M.I. Sinclair, P.C. Maxwell, B.R. Lyon, B.W. Holloway, J. Bacteriol. 168, 1302–1308 (1986)

    PubMed  CAS  Google Scholar 

  • J.L. Slightom, M. Durand-Tardif, L. Jouanin, D. Tepfer, J. Biol. Chem. 261, 108–121 (1986)

    PubMed  CAS  Google Scholar 

  • A. Suyama, R. Iwakiri, N. Kimura, A. Nishi, K. Nakamura, K. Furukawa, J. Bacteriol. 178, 4039–4046 (1996)

    PubMed  CAS  Google Scholar 

  • M. Suzuki, T. Hayakawa, J.P. Shaw, M. Rekik, S. Harayama, J. Bacteriol. 173, 1690–1695 (1991)

    PubMed  CAS  Google Scholar 

  • H. Tabak, J. Lazorchak, L. Lei, A. Khodadoust, J. Antia, R. Bagchi, M. Suidan, Environ. Toxicol. Chem. 22, 473–482 (2003)

    Article  PubMed  CAS  Google Scholar 

  • Y. Tao, A. Fishman, W.E. Bentley, T.K. Wood, J. Bacteriol. 186, 4705–4713 (2004)

    Article  PubMed  CAS  Google Scholar 

  • B.L. Taylor, I.B. Zhulin, Mol. Biol. Rev. 63, 479–506 (1999)

    CAS  Google Scholar 

  • J.T. Trevors, T. Barkay, A.W. Bourquin, Can. J. Microbiol. 33, 191–198 (1987)

    Article  CAS  Google Scholar 

  • R. van Herwijnen, D. Springael, P. Slot, H.A.J. Govers, J.R. Parsons, Appl. Environ. Microbiol. 69, 186–190 (2003a)

    Article  PubMed  Google Scholar 

  • R. van Herwijnen, P. Wattiau, L. Bastiaens, L. Daal, L. Jonker, D. Springael, H.A.J. Govers, J.R. Parsons, Res. Microbiol. 154, 199–206 (2003b)

    Article  PubMed  Google Scholar 

  • G. Vardar, T.K. Wood, J. Bacteriol. 187, 1511–1514 (2005)

    Article  PubMed  CAS  Google Scholar 

  • A. Velasco, S. Alonso, J.L. Garcia, J. Perera, E. Diaz, J. Bacteriol. 180, 1063–1071 (1998)

    PubMed  CAS  Google Scholar 

  • A.W. Walker, J.D. Keasling, Biotechnol. Bioeng. 78, 715–721 (2002)

    Article  PubMed  CAS  Google Scholar 

  • J.F. Wu, C.Y. Jiang, B.J. Wang, Y.F. Ma, Z.P. Liu, S.J. Liu, Appl. Environ. Microbiol. 72, 1759–1765 (2006)

    Article  PubMed  CAS  Google Scholar 

  • O. Yoshiyuki, K. Toshiaki, T. Masataka, N. Yuji, Appl. Microbiol. Biotechnol. 65, 250–258 (2004)

    Google Scholar 

  • L.R. Zeph, M.A. Onaga, G. Stotzky, Appl. Environ. Microbiol. 54, 1731–1737 (1988)

    PubMed  CAS  Google Scholar 

  • G.J. Zylstra, W.R. McCombie, D.T. Gibson, B.A. Finette, Appl. Environ. Microbiol. 54, 1498–1503 (1988)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannan Pakshirajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Netherlands

About this chapter

Cite this chapter

Sahoo, N.K., Ramesh, A., Pakshirajan, K. (2012). Bacterial Degradation of Aromatic Xenobiotic Compounds: An Overview on Metabolic Pathways and Molecular Approaches. In: Satyanarayana, T., Johri, B. (eds) Microorganisms in Environmental Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2229-3_10

Download citation

Publish with us

Policies and ethics