Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 163))

Abstract

As seen in Chaps. 2 and 5, expanding the effective optical path length or the number of light interactions with the object under study increases the sensitivity to the optical properties of the object. Therefore, it is prevalent to desire as many interactions as possible when looking for the highest sensitivity to optical losses. However, if the object’s refractive index n is different from that of its surroundings (see relations (1.102), (1.103)), the losses at two boundaries can overcome the loss being measured by their uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th edn. (Pergamon, Oxford, 1984); 7th ed. (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  2. D.M. Gates, C.C. Shaw, D. Beaumont, Infrared reflectance of evaporated metal films. J. Opt. Soc. Am. 48(2), 88–89 (1958)

    Article  ADS  Google Scholar 

  3. L.G. Schultz, F.R. Tangherlini, Optical constants of silver, gold, copper, and aluminum. II. The index of refraction n. J. Opt. Soc. Am. 44(5), 362–368 (1954)

    Article  ADS  Google Scholar 

  4. V.I. Kuprenuk, V.E. Sherstobitov, A simple method of reflectance measurements for metal mirrors at wavelength λ = 10.6 μm. J. Appl. Spectrosc 25(5), 926–928 (1974)

    Google Scholar 

  5. D. Kelsall, Absolute specular reflectance measurements of highly reflecting optical coatings at 10.6 μm. Appl. Opt. 9(1), 85–90 (1970)

    Article  ADS  Google Scholar 

  6. S. Chandra, R.S. Rohde, Ultrasensitive multiple-reflections interferometer. Appl. Opt. 21(9), 1533–1535 (1982)

    Article  ADS  Google Scholar 

  7. H. Hanada, Characteristics of a Fabry-Perot interferometer with two retroreflectors and two beam splitters. J. Opt. Soc. Am. A 9(12), 2167–2172 (1992)

    Article  ADS  Google Scholar 

  8. A.L. Vitushkin, L.F. Vitushkin, Design of a multipass optical cell based on the use of shifted corner cubes and right-angle prisms. Appl. Opt. 37(9), 162–166 (1998)

    Article  ADS  Google Scholar 

  9. J.U. White, Long optical path of large aperture. J. Opt. Soc. Am. 32(5), 285–288 (1942)

    Article  ADS  Google Scholar 

  10. T.H. Edwards, Multiple-traverse absorption cell design. J. Opt. Soc. Am. 51(1), 98–102 (1961)

    Article  ADS  Google Scholar 

  11. G.P. Semenova, V.G. Vorob’ev, Yu.D. Pushkin, Spectrophotometric attachment for absolute measurements of high specular reflectances. J. Opt. Technol 43(4), 78–79 (1976)

    Google Scholar 

  12. O. Arnon, P. Baumeister, Versatile high-precision multiple-pass reflectometer. Appl. Opt. 17(18), 2913–2916 (1978)

    Article  ADS  Google Scholar 

  13. R.P. Blickensderfer, G.E. Ewing, R. Leonard, A long path, low temperature cell. Appl. Opt. 7(11), 2214–2217 (1968)

    Article  ADS  Google Scholar 

  14. D. Horn, G.C. Pimentel, 2.5-km Low-temperature multiple-reflection cell. Appl. Opt. 10(8), 1892–1898 (1971)

    Article  ADS  Google Scholar 

  15. P.L. Hanst, Spectroscopic methods for air pollution measurement, in Advances in Environmental Science and Technology, ed. by J.N. Pitts, R.L. Metcalf (Wiley & Sons, New York, 1971), p. 91

    Google Scholar 

  16. E.O. Schulz-DuBois, Generation of square lattice of focal points by a modified White cell. Appl. Opt. 12(7), 1391–1393 (1973)

    Article  ADS  Google Scholar 

  17. D.M. Bakalyar, J.V. James, C.C. Wang, Absorption technique for OH measurements and calibration. Appl. Opt. 21(16), 2901–2905 (1982)

    Article  ADS  Google Scholar 

  18. P.L. Hanst, A.S. Lefohn, B.W. Gay Jr., Detection of atmospheric pollutants at parts-per-billion levels by infrared spectroscopy. Appl. Spectrosc. 27(3), 188–198 (1973)

    Article  ADS  Google Scholar 

  19. P.L. Hanst, Air pollution measurement by Fourier transform spectroscopy. Appl. Opt. 17(9), 1360–1366 (1978)

    Article  ADS  Google Scholar 

  20. H.J. Bernstein, J. Herzberg, Rotation-vibration spectra of diatomic and simple polyatomic molecules with long absorbing paths. J. Chem. Phys. 16(1), 30–39 (1948)

    Article  ADS  Google Scholar 

  21. W.R. Watkins, Path differencing: an improvement to multipass absorption cell measurements. Appl. Opt. 15(1), 16–19 (1976)

    Article  ADS  Google Scholar 

  22. J.U. White, Very long optical paths in air. J. Opt. Soc. Am. 66(5), 411–416 (1976)

    Article  ADS  Google Scholar 

  23. S.M. Chernin, E.G. Barskaya, Optical multipass matrix systems. Appl. Opt. 30(1), 51–58 (1991)

    Article  ADS  Google Scholar 

  24. H.D. Smith, J.K. Marshall, Method for obtaining long optical paths. J. Opt. Soc. Am. 30(8), 338–342 (1940)

    Article  ADS  Google Scholar 

  25. S.M. Chernin, Multipass V-shaped system with a large relative aperture: stages of development. Appl. Opt. 34(34), 7857–7863 (1995)

    Article  ADS  Google Scholar 

  26. K. Schäfer, K. Brockmann, J. Heland, P. Wiesen, C. Jahn, O. Legras, Multipass open-path Fourier-transform infrared measurements for nonintrusive monitoring of gas turbine exhaust composition. Appl. Opt. 44(11), 2189–2201 (2005)

    Article  ADS  Google Scholar 

  27. D.C. Tobin, L.L. Strow, W.J. Lafferty, W.B. Olson, Experimental investigation of the self- and N2-broadened continuum within the ν2 band of water vapor. Appl. Opt. 35(24), 4724–4734 (1996)

    Article  ADS  Google Scholar 

  28. P. Hannan, White cell design considerations. Opt. Eng. 28(11), 1180–1184 (1989)

    Article  ADS  Google Scholar 

  29. J.-F. Doussin, D. Ritz, P. Carlier, Multiple-pass cell for very-long-path infrared spectrometry. Appl. Opt. 38(19), 4145–4150 (1999)

    Article  ADS  Google Scholar 

  30. L. Grassi, R. Guzzi, Theoretical and practical consideration of the construction of a zero-geometric-loss multiple-pass cell based on the use of monolithic multiple-face retroreflectors. Appl. Opt. 40(33), 6062–6071 (2001)

    Article  ADS  Google Scholar 

  31. S.M. Chernin, Promising version of the three-objective multipass matrix system. Opt. Express 10(2), 104–107 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  32. D.R. Glowacki, A. Goddard, P.W. Seakins, Design and performance of a throughput-matched, zero-geometric-loss, modified three objective multipass matrix system for FTIR spectrometry. Appl. Opt. 46(32), 7872–7883 (2007)

    Article  ADS  Google Scholar 

  33. D. Herriott, H. Kogelnik, R. Kompfner, Off-axis parts in spherical mirror interferometers. Appl. Opt. 3(4), 523–526 (1964)

    Article  ADS  Google Scholar 

  34. D.R. Herriott, H.J. Schulte, Folded optical delay lines. Appl. Opt. 4(8), 883–889 (1965)

    Article  ADS  Google Scholar 

  35. J. Altman, R. Baumgart, C. Weitkamp, Two-mirror multipass absorption cell. Appl. Opt. 20(6), 995–999 (1981)

    Article  ADS  Google Scholar 

  36. P.L. Kebabian, Off-axis cavity absorption cell, U.S. Patent 5,291,265, 1 Mar 1994

    Google Scholar 

  37. J.B. McManus, P.L. Kebabian, M.S. Zahniser, Astigmatic mirror multipass absorption cells for long-path-length spectroscopy. Appl. Opt. 34(18), 3336–3348 (1995)

    Article  ADS  Google Scholar 

  38. L.-Y. Hao, S. Qiang, G.-R. Wu, L. Qi, D. Feng, Q.-S. Zhu, Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy. Rev. Sci. Instrum. 73(5), 2079–2085 (2002)

    Article  ADS  Google Scholar 

  39. J.A. Silver, Simple dense-pattern optical multipass cells. Appl. Opt. 44(31), 6545–6556 (2005); Near re-entrant dense pattern optical multipass cell, U.S. Patent Number 7,307,716, 11 Dec 2007

    Google Scholar 

  40. C. Dyroff, A. Zahn, W. Freude, B. Jänker, P. Werle, Multipass cell design for Stark-modulation spectroscopy. Appl. Opt. 46(19), 4000–4007 (2007)

    Article  ADS  Google Scholar 

  41. G.S. Engel, E.J. Moyer, Precise multipass Herriott cell design: derivation of controlling design equations. Opt. Lett. 32(6), 704–706 (2007)

    Article  ADS  Google Scholar 

  42. H.L. Welsh, E.J. Stansbury, J. Romanko, T. Feldman, Raman spectroscopy of gases. J. Opt. Soc. Am. 45(5), 338–343 (1955)

    Article  ADS  Google Scholar 

  43. A. Weber, S.P.S. Porto, L.E. Cheesman, J.J. Barrett, High-resolution Raman spectroscopy of gases with cw-laser excitation. J. Opt. Soc. Am. 57(1), 19–28 (1967)

    Article  ADS  Google Scholar 

  44. J.J. Barrett, N.I. Adams, Laser-excited rotation-vibration Raman scattering in ultra-small gas samples. J. Opt. Soc. Am. 58(3), 311–319 (1968)

    Article  ADS  Google Scholar 

  45. R.A. Hill, D.L. Hartley, Focused, multiple-pass cell for Raman scattering. Appl. Opt. 13(1), 186–192 (1974)

    Article  ADS  Google Scholar 

  46. R.A. Hill, A.J. Mulac, C.E. Hackett, Retroreflecting multipass cell for Raman scattering. Appl. Opt. 16(7), 2004–2006 (1977)

    Article  ADS  Google Scholar 

  47. A.J. Mulac, W.L. Flower, R.A. Hill, D.P. Aeschliman, Pulsed spontaneous Raman scattering technique for luminous environments. Appl. Opt. 17(17), 2695–2699 (1978)

    Article  ADS  Google Scholar 

  48. G. Müller, E. Weimer, Multipass-systeme für die Raman-spectroscopie. Optic 56(1), 1–19 (1980)

    Google Scholar 

  49. See reference [6.43]

    Google Scholar 

  50. W.R. Trutna, R.L. Byer, Multiple-pass Raman gain cell. Appl. Opt. 19(2), 301–312 (1980)

    Article  ADS  Google Scholar 

  51. M.A. Bukshtab, Configurable Tunable Resonant Multipass Cell for Scattering and Absorption Measurements, 2007

    Google Scholar 

  52. G.A. Waldherr, H. Lin, Gain analysis of an optical multipass cell for spectroscopic measurements in luminous environments. Appl. Opt. 47(7), 901–907 (2008)

    Article  ADS  Google Scholar 

  53. R. Viola, High-luminosity multipass cell for infrared imaging spectroscopy. Appl. Opt. 45(12), 2805–2809 (2006)

    Article  ADS  Google Scholar 

  54. J. Reid, M. El-Sherbiny, B.K. Garside, E.A. Ballik, Sensitivity limits of a tunable diode laser spectrometer, with application to the detection of NO2 at the 100-ppt level. Appl. Opt. 19(19), 3349–3354 (1980)

    Article  ADS  Google Scholar 

  55. D.T. Cassidy, J. Reid, Harmonic detection with tunable diode lasers: two-tone modulation. Appl. Phys. B 29(4), 279–285 (1982)

    Article  ADS  Google Scholar 

  56. P. Werle, B. Jänker, High-frequency-modulation spectroscopy: phase noise and refractive index fluctuations in optical multipass cells. Opt. Eng. 35(7), 2051–2057 (1996)

    Article  ADS  Google Scholar 

  57. C.R. Webster, Brewster-plate spoiler: a novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption sensitivities. J. Opt. Soc. Am. B 2(9), 1464–1470 (1985)

    Article  ADS  Google Scholar 

  58. J.A. Silver, A.C. Stanton, Optical interference fringe reduction in laser absorption experiments. Appl. Opt. 27(10), 1914–1916 (1988)

    Article  ADS  Google Scholar 

  59. A. Fried, J.R. Drummond, B. Henry, J. Fox, Reduction of interference fringes in small multipass absorption cells by pressure modulation. Appl. Opt. 29(7), 900–902 (1990)

    Article  ADS  Google Scholar 

  60. J.B. McManus, P.L. Kebabian, Narrow optical interference fringes for certain setup conditions in multipass absorption cells of the Herriott type. Appl. Opt. 29(7), 898–900 (1990)

    Article  ADS  Google Scholar 

  61. H.C. Sun, E.A. Whittaker, Novel etalon fringe rejection technique for laser absorption spectroscopy. Appl. Opt. 31(24), 4998–5002 (1992)

    Article  ADS  Google Scholar 

  62. D.E. Cooper, J.P. Watjen, Two-tone optical heterodyne spectroscopy with a tunable lead-salt diode laser. Opt. Lett. 11(10), 606–608 (1986); D.E. Cooper, C.B. Carlisle, High-sensitivity FM spectroscopy with a lead-salt diode laser. Opt. Lett. 13(9), 719–721 (1988)

    Google Scholar 

  63. G. Durry, T. Danguy, I. Pouchet, Open multipass absorption cell for in situ monitoring of stratospheric trace gas with telecommunication laser diodes. Appl. Opt. 41(3), 424–433 (2002)

    Article  ADS  Google Scholar 

  64. S. Hocquet, D. Penninckx, E. Bordenave, C. Gouedard, Y. Jaouen, FM-to-AM conversion in high-power lasers. Appl. Opt. 47(18), 3338–3349 (2008)

    Article  ADS  Google Scholar 

  65. X. Dangpeng, W. Jianjun, L. Mingzhong, L. Honghuan, Z. Rui, D. Ying, D. Qinghua, H. Xiaodong, W. Mingzhe, D. Lei, T. Jun, Weak etalon effect in wave plates can introduce significant FM-to-AM modulations in complex laser systems. Opt. Express 18(7), 6621–6627 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bukshtab .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bukshtab, M. (2012). Systems of Multiple Reflections. In: Applied Photometry, Radiometry, and Measurements of Optical Losses. Springer Series in Optical Sciences, vol 163. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2165-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2165-4_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2164-7

  • Online ISBN: 978-94-007-2165-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics