Skip to main content

Decontamination of Radioactive-Contaminated Soils: Current Perspective

  • Chapter
  • First Online:
Biomanagement of Metal-Contaminated Soils

Part of the book series: Environmental Pollution ((EPOL,volume 20))

  • 3424 Accesses

Abstract

Radionuclides exist in the environment naturally and, in more recent times, have been added by nuclear power and weapons. The carcinogenic nature and long half-lives of many radionuclides make them a potential threat to human health. Moreover, there is an increasing trend of uranium accumulating in soils due to a number of deliberate or wrong practices. Also, the contamination of land by naturally occurring radionuclides from “non-nuclear” industries include uranium mining and milling, metal or coal mining, radium and thorium factories, and the processing of materials containing technologically enhanced levels of natural radioactivity. As a consequence, there would be a risk for ecosystems, agro-systems, and health. It is suggested that knowledge of the mechanisms that control the behavior of such heavy metals must be improved and be used for risk assessment and proposition of remediation treatments. Phytoremediation has been used to extract radionuclides and other pollutants from contaminated sites. The accuracy and success of these applications depend on an understanding of the processes involved in plant uptake of radionuclides. The recent advances in uranium removal from contaminated soils, using either chemical and/or biological techniques (such as hyperaccumulator plants, or high biomass crop species after soil treatment with chelating compounds) are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142

    Article  CAS  Google Scholar 

  • Aksorn E, Visoottiviseth P (2004) Selection of suitable emergent plants for removal of arsenic from arsenic contaminated water. Sci Asia 30:105–113

    Article  CAS  Google Scholar 

  • Angle JS, Chaney RL, Baker AJM, Li Y, Reeves R, Volk V, Roseberg R, Brewer E, Burke S, Nelkin J (2001) Developing commercial phyto-extraction technologies: practical considerations. S Afr J Sci 97:619–623

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1995) The potential for heavy metal decontamination. Mining Environ Manage 3:12–I 4

    Google Scholar 

  • Banuelos GS, Ajwa HA (1999) Trace elements in soils and plants: an overview. J Environ Sci Health A Toxic Hazard Subst Environ Eng 34:951–974

    Article  Google Scholar 

  • Baumgartner DJ, Glenn EP, Kuehl RO, Thompson TL, Artiola JF, Menke SE, Saar RA, Moss GS, Algharaibeh MA (2000) Plant uptake response to metals and nitrate in simulated uranium mill tailings contaminated groundwater. Water Air Soil Pollut 118:115–129

    Article  CAS  Google Scholar 

  • Dickinson NM, Pulford ID (2005) Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail. Environ Int 31:609–613

    Article  CAS  Google Scholar 

  • Dreesen DR, Cokal EJ (1984) Plant uptake assay t determine bioavailability of inorganic contaminants. Water Air Soil Pollut 22:85–93

    Article  CAS  Google Scholar 

  • Dyer DB (2003) A field guide to bacteria. Comstock Publishing Associates/Cornell University Press, Ithaca/London

    Google Scholar 

  • Ebbs SD, Brady D, Kochian L (1998) Role of uranium speciation in the uptake and translocation of uranium by plants. J Exp Bot 49:1183–1190

    Article  CAS  Google Scholar 

  • Ebbs S, Brady D, Norvell W, Kochian L (2001) Uranium speciation, plant uptake and phytoremediation. Prac Period Hazard Toxic Radioact Waste Manag 5:130–135

    Article  CAS  Google Scholar 

  • Elless MP, Timpson ME, Lee SY (1997) Concentration of uranium particulates from soils using a novel density-separation technique. Soil Sci Soc Am J 61:626–631

    Article  CAS  Google Scholar 

  • Evangelou MWH, Ebel M, Schnffer A (2006) Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere 63:996–1004

    Article  CAS  Google Scholar 

  • Flues M, Moraes V, Mazzilli BP (2002) The influence of a coal-fired power plant operation on radionuclide concentrations in soil. J Environ Radioact 63:285–294

    Article  CAS  Google Scholar 

  • Fresquez PR, Armstrong DR, Mullen MA, Naranjo L Jr (1998) The uptake of radionuclides by beans, squash, and corn growing in contaminated alluvial soils at Los Alamos National Laboratory. J Environ Sci Health B: Pest Food Contam Agric Wastes 33:99–122

    CAS  Google Scholar 

  • Fritioff Å, Greger M (2003) Aquatic and terrestrial plant species with potential to remove heavy metals from storm water. Int J Phytorem 5:211–224

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost effective plant-based technology for the removal of metals from the environment. Biores Technol 77:229–236

    Article  CAS  Google Scholar 

  • Gisbert C, Ross R, De Haro A, Walker DJ, Bernal MP, Serrano R, Navarro-Avino J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophy Res Comm 303:440–445

    Article  CAS  Google Scholar 

  • Grenthe I, Fuger J, Konings RJM, Lemire RJ, Muller AB, Cregu CNT, Wanner H (1992) Chemical thermodynamics of uranium. North Holland, Amsterdam

    Google Scholar 

  • Gu B, Chen J (2003) Enhanced microbial reduction of Cr (VI) and U(VI) by different natural organic matter fractions. Geochim Cosmochim Acta 67:3575–3582

    Article  CAS  Google Scholar 

  • Gu B, Yan H, Zhou P, Watson DB, Park M, Istok J (2005) Natural humics impact uranium bioreduction and oxidation. Environ Sci Technol 39:5268

    Article  CAS  Google Scholar 

  • Higgo J, Kinniburgh D, Smith B, Tippin E et al (1993) Complexation of cobalt2+, Nickel2 uranyl and calcium2+ by humic substances in groundwaters. Radiochim Acta 61

    Google Scholar 

  • Hinchman R, Negri C (1994) The grass can be cleaner on the other side of the Fence. Logos Argonne Nat Lab 12:8–11

    Google Scholar 

  • Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. J Environ Sci Technol 32:13

    Article  Google Scholar 

  • Kadlec RH (1995) Overview: Surface flow constructed wetlands. Water Sci Technol 32:1–12

    CAS  Google Scholar 

  • Kadlec RH, Knight RL (eds.) (1996) Treatment wetlands. Lewis Publishers, Boca Raton, 893p

    Google Scholar 

  • Kamal M, Ghaly AE, Mahmoud N, Côté R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039

    Article  CAS  Google Scholar 

  • Lamas M, Fleckenstein J, Schroetter S, Sparovek RM, Schnug E, Kalra YP (2002) Determination of uranium by means of ICP-QMS. Comm Soil Sci Plant Anal 33:3469–3479

    Article  CAS  Google Scholar 

  • Lambers B, Jackson D, Vandenhove H, Hedemann Jensen P, Smith AD, Bousher A (1999) A common approach to restoration of sites contaminated with enhanced levels of naturally occurring radionuclides. In: Thorne MC (ed.) Proceedings of the international symposium organised by the society for radiological protection, Southport, pp 99, 14–18 June 1999, ISBN 0-7058-1784-9

    Google Scholar 

  • Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42:547

    Article  CAS  Google Scholar 

  • Lenhart JJ, Cabaniss SE, MacCarthy P, Honeyman BD (2000) Uranium(VI) complexation with citric, humic and fulvic acids. Radiochim Acta 88:345

    Article  CAS  Google Scholar 

  • Li WC, Victor DM, Chakrabarti L (1980) Effect of pH and uranium concentration on interaction of uranium (VI) and uranium(IV) with organic ligands in aqueous solutions. Anal Chem 52:520

    Article  CAS  Google Scholar 

  • Liphadzi MS, Kirkham MB, Mankin KR, Paulsen GM (2003) EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm. Plant Soil 257:171–182

    Article  CAS  Google Scholar 

  • Liu C, Gorby YA, Zachara JM, Fredrickso JK, Brown CF (2002) Reduction kinetics of Fe(III), Co(III), U(VI) Cr(VI) and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol Bioeng 80:637–670

    Article  CAS  Google Scholar 

  • Lotfy SM (2010) Decontamination of soil polluted with heavy metals using plants as determined by nuclear technique. Ph.D. thesis, Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig

    Google Scholar 

  • Lovley DR (1993) Dissimilatory metal reduction. Annu Rev Microbiol 47:263

    Article  CAS  Google Scholar 

  • McCutcheon SC, Schnoor JL (eds.) (2003) Phytoremediation – transformation and control of contaminants. Wiley Interscience, Hoboken, pp 985

    Google Scholar 

  • McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks RR (ed.) Plants that hyperaccumulate heavy metals: their role in archeology, microbiology, mineral exploration, phytomining and phytoremediation. CAB International, Wallingford/Oxon/New York, pp 261–287

    Google Scholar 

  • McGrath SP, Zhao FJ (2003) Curr Opin Biotechnol 14:277–282

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E, Powlson DS, Bateman GL, Davies-KG, Gaunt-JL, Hirsch-PR, Barlow PW (2002) Plant and rhizosphere processes involved in phytoremediation of ­metal-contaminated soils. Interactions in the root environment:- an integrated approach. In: Proceedings of the millennium conference on rhizosphere interactions, IACR Rothamsted, UK, 10–12 Apr 2001.2002, 207–214

    Google Scholar 

  • Moulin V, Tits J, Quaounian G (1992) Actinide speciation in the presence of humic substances in natural water conditions. Radiochim Acta 58:179

    Google Scholar 

  • Norwell WA (1984) Comparision of chelating agents as extractants for metals in diverse soil materials. Soil Sci Soc Am J 48:1285–1292

    Article  Google Scholar 

  • Okurut TO, Rijs GBJ, van Bruggen JJA (1999) Design and performance of experimental constructed wetlands in Uganda, planted with Cyperus papyrus and Phragmites mauritianus. Water Sci Technol 40:265–263

    Google Scholar 

  • Papp Z, Dezso Z, Daroczy S (2002) Significant radioactive contamination of soil around a coal-fired thermal power plant. J Environ Radioact 59:191–205

    Article  CAS  Google Scholar 

  • Prasad MNV (2001a) Metals in the environment: analysis by biodiversity. Marcel Dekker, New York, pp 504

    Google Scholar 

  • Prasad MNV (2001b) Bioremediation Potential of Amaranthaceae. In: A.Leeson, EA Foote, MK Banks, VS Magar (eds.) Phytoremediation, wetlands, and sediments, vol 6:165–172. Proceedings of the 6th international In Situ and On-Site bioremediation symposium, Battelle Press, Columbus

    Google Scholar 

  • Prasad MNV (2004a) Phytoremediation of metals in the environment for sustainable development. Proc Indian Natl Sci Acad 70:71–98

    CAS  Google Scholar 

  • Prasad MNV (ed.) (2004b) Heavy metal stress in plants: from biomolecules to ecosystems. Springer, Heidelberg, pp 462

    Google Scholar 

  • Prasad MNV (2006a) Stabilization, remediation and integrated management of metal-contaminated ecosystems by grasses (Poaceae). In: Prasad MNV, Sajwan KS, Naidu R (eds.) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. CRC Press/Taylor & Francis, Boca Raton, pp 405–424

    Google Scholar 

  • Prasad MNV (2006b) Sunflower (Helianthus annuus L.)- a potential crop for environmental industry.In: 1st international symposium on sunflower industrial uses, Faculty of Agriculture, Udine, Italy, 11–13 Sept 2006

    Google Scholar 

  • Prasad MNV (2007) Aquatic plants for phytotechnology. In: Singh SN, Tripathi RD (eds.) Environmental bioremediation technologies. Springer, Berlin, pp 257–274

    Google Scholar 

  • Prasad MNV, Freitas H (2003) Metal hyperaccumulation in plants– Biodiversity prospecting for phytoremediation technology. Electronic J Biotechnol 6:275–321

    Google Scholar 

  • Prasad MNV, Greger M, Smith BN (2001) Aquatic macrophytes. In: Prasad MNV (ed.) Metals in the environment: analysis by biodiversity. Marcel Dekker, New York, p 259

    Google Scholar 

  • Prasad MNV, Greger M, Aravind P (2006) Biogeochemical cycling of trace elements by aquatic and wetland plants: relevance to phytoremediation. In: Prasad MNV, Sajwan KS, Naidu R (eds.) Trace elements in the environment: biogeochemistry, Biotechnology and Bioremediation. CRC Press/Taylor & Francis, Boca Raton, pp 451–482

    Google Scholar 

  • Punshon T, Gaines KF, Jenkins RA Jr (2003) Bioavailability and trophic transfer of sediment-bound Ni and U in a southeastern wetland system. Arch Environ Contam Toxicol 44:30–35

    Article  CAS  Google Scholar 

  • Raskin I, Kumar PBNA, Dushenkov S, Salt DE (1997) Bio-concentration of heavy metals by plants. Environ Biotechnol 5:285–290

    Google Scholar 

  • Reimann C, Koller F, Frengstad B, Kashulina G, Niskavaara H, Englmaier P (2001a) Comparison of the element composition in several plant species and their substrate from a 1500 000-km2 area in Northern Europe. Sci Total Environ 278:87–112

    Article  CAS  Google Scholar 

  • Reimann C, Koller F, Kashulina G, Niskavaara H, Englmaier P (2001b) Influence of extreme pollution on the inorganic chemical composition of some plants. Environ Poll 115:239–252

    Article  CAS  Google Scholar 

  • Ross S (ed.) (1994) Toxic metals in soil-plant systems. Wiley, New York

    Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation – a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol 13:468–474

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Sansone U, Danesi PR, Barbizzi S, Belli M, Campbell M, Gaudino S, Jia G, Ocone R, Pati A, Rosamilia S, Stellato L (2001) Radioecological survey at selected sites hit by depleted uranium ammunition during the 1999 Kosovo conflict. Sci Total Environ 281:23–25

    Google Scholar 

  • Schmidt U (2003) The effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J Environ Qual 32:1939–1954

    Article  CAS  Google Scholar 

  • Schnoor JL, Licht LL, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318A–323A

    Article  CAS  Google Scholar 

  • Shahandeh H, Hossner LR (2002a) A role of soil properties in phytoaccumulation of uranium. Water Air Soil Pollut 141:165–180

    Article  CAS  Google Scholar 

  • Shahandeh H, Hossner LR (2002b) Enhancement of uranium phytoaccumulation from contaminated soils. Soil Sci 167:269–280

    Article  CAS  Google Scholar 

  • Sheppard SC, Evenden WG (1992) Concentration enrichment of sparingly soluble contaminants (U, Th and Pb) by erosion and by soil adhesion to plants and skin. J Environ Geochem Health 14:121–131

    Article  CAS  Google Scholar 

  • Soudek P, Podracká E, Vágner M, Van kT, Pet!ík P, Tykva R (2004) 226Ra uptake from soils into different plant species. J Radioanalytical Nucl Chem 262:187–189

    Article  CAS  Google Scholar 

  • Spear JR, Figueroa LA, Honeyman BD (1999) Modeling the removal of uranium U(VI) from aqueous solutions in the presence of sulfate reducing bacteria. Environ Sci Technol 33:2667

    Article  CAS  Google Scholar 

  • Steubing L, Haneke J, Markert B (1993) Higher plants as indicators of uranium occurrence in soil. In: Markert B (ed.) Plants as biomonitors: indicators for heavy metals in the terrestrial environment. VCH, Weinheim/New York, pp 155–165

    Google Scholar 

  • Truex MJ, Peyton BM, Valentine NB, Gorby YA (1997) Kinetics of U(VI) reduction by a dissimilatory Fe(III)-reducing bacterium under non-growth conditions. Biotechnol Bioeng 55:490

    Article  CAS  Google Scholar 

  • UNEP (2000) NATO confirms to the UN use of depleted uranium during the Kosovo Conflict. Press Release, 21 Mar 2000

    Google Scholar 

  • UNEP (2001) Depleted uranium in Kosovo, post-conflict environmental assessment. In: UNEP scientific team mission to Kosovo” (5th-19th November 2000). United Nations Environment Programme, Geneva, March 2001

    Google Scholar 

  • US-EPA/630/P-03/001FMarch (2005) Guidelines for Carcinogen Risk Assessment. Risk Assessment Forum, U.S. Environmental Protection Agency, Washington

    Google Scholar 

  • Vandenhove H, van M H, van S W, van Hees M, van Winckel S (2001) Feasibility of phyto-extraction to clean up low-level uranium-contaminated soil. Int J Phytoremed 3:301–320

    Google Scholar 

  • Wenger K, Gupta SK, Furrer G, Schulin R (2002) Zinc extraction potential of two common crop plants, Nicotiana tabacum and Zea mays. Plant Soil 242:217–225

    Article  CAS  Google Scholar 

  • Whicker FW, Hinton TG, Orlandini KA, Clark SB (1999) Uptake of natural and anthropogenic actinides in vegetable crops grown on a contaminated lake bed. J Environ Radioact 45:1–12

    Article  CAS  Google Scholar 

  • Williams JB (2002) Phytoremediation in wetland ecosystems: progress, problems, and potential. Crit Rev Plant Sci 21:607–635

    Article  CAS  Google Scholar 

  • Yukawa M, Watanabe Y, Nishimura Y, Guo Y, Yongru Z, Lu H, Zhan W, Wei L, Tao Z, Rossbach M (1999) Determination of U and Th in soil and plants obtained from a high natural radiation area in China using ICP-MS and gamma-counting. J Anal Chem 363:760–766

    CAS  Google Scholar 

  • Zeh P, Czerwinski KR, Kim JI (1997) Speciation of uranium in Gorleben groundwaters. Radiochim Actav 37:76

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamdoh F. Abdel-Sabour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Abdel-Sabour, M.F. (2011). Decontamination of Radioactive-Contaminated Soils: Current Perspective. In: Khan, M., Zaidi, A., Goel, R., Musarrat, J. (eds) Biomanagement of Metal-Contaminated Soils. Environmental Pollution, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1914-9_17

Download citation

Publish with us

Policies and ethics