Skip to main content

Mitochondrial Dynamics and Autophagy

  • Chapter
  • First Online:
Mitochondrial Dynamics and Neurodegeneration

Abstract

Efficient mitochondrial quality control is critical for maintenance of a healthy mitochondrial population. Both mitochondrial dynamics and selective mitochondrial autophagy, termed mitophagy, contribute to mitochondrial turnover and quality control. Mitochondrial fusion and fission allow for complementation of mitochondrial solutes, proteins, and DNA but also for generation of unequal daughter organelles. Selective fusion is utilized for incorporation of polarized mitochondria back into the network, while a depolarized mitochondrion will not fuse, but instead will be targeted for elimination by mitophagy. Mitophagy is dependent on mitochondrial dysfunction, such as depolarization, and a number of proteins are required for core autophagic machinery, signaling, and mitochondrial segregation and targeting. The relationship between mitochondrial dynamics and autophagy and how they may contribute to both mitochondrial and cellular quality control is beginning to be elucidated. Even with the questions that remain in regards to the regulation and interdependence of mitochondrial dynamics and mitophagy, it is clear that alterations in these processes lead to mitochondrial dysfunction and pathological states such as neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A9-DA:

A9-subtype dopaminergic neurons of the substantia nigra parscompacta

AD:

Alzheimer’s disease

ALS:

amyotrophic lateral sclerosis

AMPK:

5′adenosine-monophosphate activated protein kinase

ATG:

autophagy-related genes

CA:

constitutively active

CCCP:

carbonyl cyanide m-chlorophenylhydrazone

CMA:

chaperone-mediated autophagy

CMT2A:

Charcot-Marie-Tooth neuropathy type 2A

Cvt:

cytoplasmic to vacuole targeting

DA:

dopaminergic

DLB:

dementia with Lewy Bodies

DN:

dominant negative

DNM1L:

dynamin 1-like

Drp1:

dynamin related protein 1

ER:

endoplasmic reticulum

ERK1/2:

extracellular signal-regulated protein kinase 1/2

ETC:

electron transport chain

Fzo1p:

fuzzy onion protein

GAP:

GTPase-activating protein

HIF:

hypoxia-inducing factor

LAMP-2A:

lysosomal-associated membrane protein 2A

LC3; (MAP)LC3:

microtubule-associated protein light chain 3

MAO:

monoamine oxidase

mdivi-1:

mitochondrial division inhibitor

Mfn1/2:

mitofusin 1 and 2

mPTP:

mitochondrial permeability transition pore

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

mtDNA:

mitochondrial DNA

mTOR:

mammalian target of Rapamycin

mtPA-GFP:

mitochondrial photoactivatable green fluorescent protein

NGF:

nerve growth factor

OPA1:

optic atrophy protein 1

PBMC:

peripheral blood mononuclear cells

PD:

Parkinson’s disease

PE:

phosphatidylethanolamine

PI:

phosphatidylinositol

PINK1:

PTEN-induced kinase 1

RGC:

retinal ganglion cells

Rheb:

Ras homolog enriched in brain

ROS:

reactive oxygen species

TMRE:

tetramethylrhodamine ethyl ester

TOR:

target of Rapamycin

TORC1/2:

TOR complex 1 and 2

Ulk1/2:

Unc-51-like kinase 1 and 2

VDAC1:

voltage-dependent anion channel 1

Vps:

vacuolar protein-sorting.

References

  • Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL, Davis RJ, Mizushima N, Rakic P, Dardzinski BJ, Holland SK, Sharp FR, and Kuan CY (2006) Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol, 169, 566–583.

    PubMed  CAS  Google Scholar 

  • Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya SS, and Wissinger B (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet, 26, 211–215.

    PubMed  CAS  Google Scholar 

  • Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, and Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol, 12, 25–31.

    PubMed  CAS  Google Scholar 

  • Arbuthnott GW and Wickens J (2007) Space, time and dopamine. Trends Neurosci, 30, 62–69.

    PubMed  CAS  Google Scholar 

  • Arnoult D, Rismanchi N, Grodet A, Roberts RG, Seeburg DP, Estaquier J, Sheng M, and Blackstone C (2005) Bax/Bak-dependent release of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death. Curr Biol, 15, 2112–2118.

    PubMed  CAS  Google Scholar 

  • Barsoum MJ, Yuan H, Gerencser AA, Liot G, Kushnareva Y, Graber S, Kovacs I, Lee WD, Waggoner J, Cui J, White AD, Bossy B, Martinou JC, Youle RJ, Lipton SA, Ellisman MH, Perkins GA, and Bossy-Wetzel E (2006) Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J, 25, 3900–3911.

    PubMed  CAS  Google Scholar 

  • Bereiter-Hahn J and Voth M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech, 27, 198–219.

    PubMed  CAS  Google Scholar 

  • Braak H, Ghebremedhin E, Rub U, Bratzke H, and Del TK (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res, 318, 121–134.

    PubMed  Google Scholar 

  • Campbell CL and Thorsness PE (1998) Escape of mitochondrial DNA to the nucleus in yme1 yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments. J Cell Sci, 111 ( Pt 16), 2455–2464.

    PubMed  CAS  Google Scholar 

  • Chen H and Chan DC (2005) Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet, 14 Spec No. 2, R283-R289.

    PubMed  CAS  Google Scholar 

  • Chen H and Chan DC (2009) Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet, 18, R169-R176.

    PubMed  CAS  Google Scholar 

  • Chen H and Chan DC (2010) Physiological functions of mitochondrial fusion. Ann N Y Acad Sci, 1201, 21–25.

    PubMed  CAS  Google Scholar 

  • Chu CT (2010) Tickled PINK1: mitochondrial homeostasis and autophagy in recessive Parkinsonism. Biochim Biophys Acta, 1802, 20–28.

    PubMed  CAS  Google Scholar 

  • Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, and Guo M (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 441, 1162–1166.

    PubMed  CAS  Google Scholar 

  • Clark SL Jr (1957) Cellular differentiation in the kidneys of newborn mice studies with the electron microscope. J Biophys Biochem Cytol, 3, 349–362.

    PubMed  Google Scholar 

  • Crews L, Spencer B, Desplats P, Patrick C, Paulino A, Rockenstein E, Hansen L, Adame A, Galasko D, and Masliah E (2010) Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS One, 5, e9313.

    PubMed  Google Scholar 

  • Cuervo AM (2006) Autophagy in neurons: it is not all about food. Trends Mol Med, 12, 461–464.

    PubMed  CAS  Google Scholar 

  • Cui M, Tang X, Christian WV, Yoon Y, and Tieu K (2010) Perturbations in mitochondrial dynamics induced by human mutant PINK1 can be rescued by the mitochondrial division inhibitor mdivi-1. J Biol Chem, 285, 11740–11752.

    PubMed  CAS  Google Scholar 

  • Dagda RK, Cherra SJ, III, Kulich SM, Tandon A, Park D, and Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem, 284, 13843–13855.

    PubMed  CAS  Google Scholar 

  • Dagda RK and Chu CT (2009) Mitochondrial quality control: insights on how Parkinson’s disease related genes PINK1, parkin, and Omi/HtrA2 interact to maintain mitochondrial homeostasis. J Bioenerg Biomembr, 41, 473–479.

    PubMed  CAS  Google Scholar 

  • Dagda RK, Zhu J, Kulich SM, and Chu CT (2008) Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson’s disease. Autophagy, 4, 770–782.

    PubMed  CAS  Google Scholar 

  • de Brito OM and Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature, 456, 605–610.

    PubMed  Google Scholar 

  • Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A, Boya P, and Vila M (2010) Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci, 30, 12535–12544.

    PubMed  CAS  Google Scholar 

  • Deng H, Dodson MW, Huang H, and Guo M (2008) The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci USA, 105, 14503–14508.

    PubMed  CAS  Google Scholar 

  • Deter RL, Baudhuin P, and De DC (1967) Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol, 35, C11-C16.

    PubMed  CAS  Google Scholar 

  • Deter RL and De DC (1967) Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol, 33, 437–449.

    PubMed  CAS  Google Scholar 

  • Ding WX, Ni HM, Li M, Liao Y, Chen X, Stolz DB, Dorn Ii GW, and Yin XM (2010) Nix is critical to two distinct phases of mitophagy: reactive oxygen species (ROS)-mediated autophagy induction and Parkin-ubiqutin-p62-mediated mitochondria priming. J Biol Chem

    Google Scholar 

  • Duvezin-Caubet S, Jagasia R, Wagener J, Hofmann S, Trifunovic A, Hansson A, Chomyn A, Bauer MF, Attardi G, Larsson NG, Neupert W, and Reichert AS (2006) Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J Biol Chem, 281, 37972–37979.

    PubMed  CAS  Google Scholar 

  • Elmore SP, Qian T, Grissom SF, and Lemasters JJ (2001) The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J, 15, 2286–2287.

    PubMed  CAS  Google Scholar 

  • Eskelinen EL (2008) New insights into the mechanisms of macroautophagy in mammalian cells. Int Rev Cell Mol Biol, 266, 207–247.

    PubMed  CAS  Google Scholar 

  • Essick EE and Sam F (2010) Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxid Med Cell Longev, 3, 168–177.

    PubMed  Google Scholar 

  • Esteves AR, Lu J, Rodova M, Onyango I, Lezi E, Dubinsky R, Lyons KE, Pahwa R, Burns JM, Cardoso SM, and Swerdlow RH (2010) Mitochondrial respiration and respiration-associated proteins in cell lines created through Parkinson’s subject mitochondrial transfer. J Neurochem, 113, 674–682.

    PubMed  CAS  Google Scholar 

  • Exner N, Treske B, Paquet D, Holmstrom K, Schiesling C, Gispert S, Carballo-Carbajal I, Berg D, Hoepken HH, Gasser T, Kruger R, Winklhofer KF, Vogel F, Reichert AS, Auburger G, Kahle PJ, Schmid B, and Haass C (2007) Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci, 27, 12413–12418.

    PubMed  CAS  Google Scholar 

  • Fransson S, Ruusala A, and Aspenstrom P (2006) The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun, 344, 500–510.

    PubMed  CAS  Google Scholar 

  • Frieden M, James D, Castelbou C, Danckaert A, Martinou JC, and Demaurex N (2004) Ca(2+) homeostasis during mitochondrial fragmentation and perinuclear clustering induced by hFis1. J Biol Chem, 279, 22704–22714.

    PubMed  CAS  Google Scholar 

  • Fujita N, Hayashi-Nishino M, Fukumoto H, Omori H, Yamamoto A, Noda T, and Yoshimori T (2008) An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell, 19, 4651–4659.

    PubMed  CAS  Google Scholar 

  • Fujitani Y, Ueno T, and Watada H (2010) Autophagy in health and disease. 4. The role of pancreatic beta-cell autophagy in health and diabetes. Am J Physiol Cell Physiol, 299, C1-C6.

    PubMed  CAS  Google Scholar 

  • Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K, Downward J, Latchman DS, Tabrizi SJ, Wood NW, Duchen MR, and Abramov AY (2009) PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell, 33, 627–638.

    PubMed  CAS  Google Scholar 

  • Gasser T (2009) Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert Rev Mol Med, 11, e22.

    PubMed  Google Scholar 

  • Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, and Taanman JW (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet, 19, 4861–4870.

    PubMed  CAS  Google Scholar 

  • Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, and Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol, 12, 119–131.

    PubMed  CAS  Google Scholar 

  • Gispert S, Ricciardi F, Kurz A, Azizov M, Hoepken HH, Becker D, Voos W, Leuner K, Muller WE, Kudin AP, Kunz WS, Zimmermann A, Roeper J, Wenzel D, Jendrach M, Garcia-Arencibia M, Fernandez-Ruiz J, Huber L, Rohrer H, Barrera M, Reichert AS, Rub U, Chen A, Nussbaum RL, and Auburger G (2009) Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS One, 4, e5777.

    PubMed  Google Scholar 

  • Glater EE, Megeath LJ, Stowers RS, and Schwarz TL (2006) Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol, 173, 545–557.

    PubMed  CAS  Google Scholar 

  • Glick D, Barth S, and Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol, 221, 3–12.

    PubMed  CAS  Google Scholar 

  • Gluck MR and Zeevalk GD (2004) Inhibition of brain mitochondrial respiration by dopamine and its metabolites: implications for Parkinson’s disease and catecholamine-associated diseases. J Neurochem, 91, 788–795.

    PubMed  CAS  Google Scholar 

  • Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ, Gajendiran M, Roth BL, Chesselet MF, Maidment NT, Levine MS, and Shen J (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem, 278, 43628–43635.

    PubMed  CAS  Google Scholar 

  • Goldman SJ, Taylor R, Zhang Y, and Jin S (2010) Autophagy and the degradation of mitochondria. Mitochondrion, 10, 309–315.

    PubMed  CAS  Google Scholar 

  • Gomes LC and Scorrano L (2008) High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim Biophys Acta, 1777, 860–866.

    PubMed  CAS  Google Scholar 

  • Gottlieb RA and Carreira RS (2010) Autophagy in health and disease. 5. Mitophagy as a way of life. Am J Physiol Cell Physiol, 299, C203-C210.

    PubMed  CAS  Google Scholar 

  • Griparic L, van der Wel NN, Orozco IJ, Peters PJ, and van der Bliek AM (2004) Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem, 279, 18792–18798.

    PubMed  CAS  Google Scholar 

  • Grunewald A, Gegg ME, Taanman JW, King RH, Kock N, Klein C, and Schapira AH (2009) Differential effects of PINK1 nonsense and missense mutations on mitochondrial function and morphology. Exp Neurol, 219, 266–273.

    PubMed  CAS  Google Scholar 

  • Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, and Lippincott-Schwartz J (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 141, 656–667.

    PubMed  CAS  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, and Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature, 441, 885–889.

    PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol, 11, 298–300.

    PubMed  CAS  Google Scholar 

  • Hyde BB, Twig G, and Shirihai OS (2010) Organellar vs cellular control of mitochondrial dynamics. Semin Cell Dev Biol, 21, 575–581.

    PubMed  CAS  Google Scholar 

  • James DI, Parone PA, Mattenberger Y, and Martinou JC (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem, 278, 36373–36379.

    PubMed  CAS  Google Scholar 

  • Ju JS and Weihl CC (2010) Inclusion body myopathy, Paget’s disease of the bone and fronto-temporal dementia: a disorder of autophagy. Hum Mol Genet, 19, R38-R45.

    PubMed  CAS  Google Scholar 

  • Kanki T and Klionsky DJ (2010) The molecular mechanism of mitochondria autophagy in yeast. Mol Microbiol, 75, 795–800.

    PubMed  CAS  Google Scholar 

  • Kanki T, Wang K, Baba M, Bartholomew CR, Lynch-Day MA, Du Z, Geng J, Mao K, Yang Z, Yen WL, and Klionsky DJ (2009a) A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol Biol Cell, 20, 4730–4738.

    PubMed  CAS  Google Scholar 

  • Kanki T, Wang K, Cao Y, Baba M, and Klionsky DJ (2009b) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell, 17, 98–109.

    PubMed  CAS  Google Scholar 

  • Karbowski M (2010) Mitochondria on guard: role of mitochondrial fusion and fission in the regulation of apoptosis. Adv Exp Med Biol, 687, 131–142.

    PubMed  CAS  Google Scholar 

  • Kissova I, Deffieu M, Manon S, and Camougrand N (2004) Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem, 279, 39068–39074.

    PubMed  CAS  Google Scholar 

  • Kitada T, Pisani A, Porter DR, Yamaguchi H, Tscherter A, Martella G, Bonsi P, Zhang C, Pothos EN, and Shen J (2007) Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci USA, 104, 11441–11446.

    PubMed  CAS  Google Scholar 

  • Kitada T, Tong Y, Gautier CA, and Shen J (2009) Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J Neurochem, 111, 696–702.

    PubMed  CAS  Google Scholar 

  • Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol, 8, 931–937.

    PubMed  CAS  Google Scholar 

  • Koch A, Thiemann M, Grabenbauer M, Yoon Y, McNiven MA, and Schrader M (2003) Dynamin-like protein 1 is involved in peroxisomal fission. J Biol Chem, 278, 8597–8605.

    PubMed  CAS  Google Scholar 

  • Koch A, Yoon Y, Bonekamp NA, McNiven MA, and Schrader M (2005) A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell, 16, 5077–5086.

    PubMed  CAS  Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, and Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 441, 880–884.

    PubMed  CAS  Google Scholar 

  • Komatsu M, Wang QJ, Holstein GR, Friedrich VL, Jr., Iwata J, Kominami E, Chait BT, Tanaka K, and Yue Z (2007) Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci USA, 104, 14489–14494.

    PubMed  CAS  Google Scholar 

  • Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, Selak MA, Ney PA, and Thompson CB (2008) Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood, 112, 1493–1502.

    PubMed  CAS  Google Scholar 

  • Kurz T, Terman A, Gustafsson B, Brunk UT (2008a) Lysosomes and oxidative stress in ageing and apoptosis. Biochim Biophys Acta, 1780, 1291–1303.

    Google Scholar 

  • Kurz T, Terman A, Gustafsson B, Brunk UT (2008b) Lysosomes in iron metabolism, ageing, and apoptosis. Histochem Cell Biol, 129, 389–406.

    Google Scholar 

  • Lee JA and Gao FB (2008a) ESCRT, autophagy, and frontotemporal dementia. BMB Rep, 41, 827–832.

    PubMed  CAS  Google Scholar 

  • Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G, Uchiyama Y, Westaway D, Cuervo AM, Nixon RA (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell, 141, 1146–1158.

    Google Scholar 

  • Lee JY, Nagano Y, Taylor JP, Lim KL, and Yao TP (2010) Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol, 189, 671–679.

    PubMed  CAS  Google Scholar 

  • Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res, 8, 3–5.

    PubMed  CAS  Google Scholar 

  • Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, and Herman B (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta, 1366, 177–196.

    PubMed  CAS  Google Scholar 

  • Liesa M, Palacin M, and Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev, 89, 799–845.

    PubMed  CAS  Google Scholar 

  • Liu W, Vives-Bauza C, Acin P, Yamamoto A, Tan Y, Li Y, Magrane J, Stavarache MA, Shaffer S, Chang S, Kaplitt MG, Huang XY, Beal MF, Manfredi G, and Li C (2009a) PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and alpha-synuclein aggregation in cell culture models of Parkinson’s disease. PLoS One, 4, e4597.

    PubMed  Google Scholar 

  • Liu X and Hajnoczky G (2009) Ca2+−dependent regulation of mitochondrial dynamics by the Miro-Milton complex. Int J Biochem Cell Biol, 41, 1972–1976.

    PubMed  CAS  Google Scholar 

  • Liu X, Weaver D, Shirihai O, and Hajnoczky G (2009b) Mitochondrial ‘kiss-and-run’: interplay between mitochondrial motility and fusion-fission dynamics. EMBO J, 28, 3074–3089.

    PubMed  CAS  Google Scholar 

  • Lutz AK, Exner N, Fett ME, Schlehe JS, Kloos K, Lammermann K, Brunner B, Kurz-Drexler A, Vogel F, Reichert AS, Bouman L, Vogt-Weisenhorn D, Wurst W, Tatzelt J, Haass C, and Winklhofer KF (2009) Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J Biol Chem, 284, 22938–22951.

    PubMed  CAS  Google Scholar 

  • Macaskill AF, Rinholm JE, Twelvetrees AE, Rancibia-Carcamo IL, Muir J, Fransson A, Aspenstrom P, Attwell D, and Kittler JT (2009) Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron, 61, 541–555.

    PubMed  CAS  Google Scholar 

  • Marongiu R, Spencer B, Crews L, Adame A, Patrick C, Trejo M, Dallapiccola B, Valente EM, and Masliah E (2009) Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson’s disease by disturbing calcium flux. J Neurochem, 108, 1561–1574.

    PubMed  CAS  Google Scholar 

  • Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R, and Kaneko T (2009) Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci, 29, 444–453.

    PubMed  CAS  Google Scholar 

  • Mazure NM and Pouyssegur J (2009) Atypical BH3-domains of BNIP3 and BNIP3L lead to autophagy in hypoxia. Autophagy, 5, 868–869.

    PubMed  Google Scholar 

  • Merz S, Hammermeister M, Altmann K, Durr M, and Westermann B (2007) Molecular machinery of mitochondrial dynamics in yeast. Biol Chem, 388, 917–926.

    PubMed  CAS  Google Scholar 

  • Mills RD, Sim CH, Mok SS, Mulhern TD, Culvenor JG, and Cheng HC (2008) Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1). J Neurochem, 105, 18–33.

    PubMed  CAS  Google Scholar 

  • Misaka T, Miyashita T, and Kubo Y (2002) Primary structure of a dynamin-related mouse mitochondrial GTPase and its distribution in brain, subcellular localization, and effect on mitochondrial morphology. J Biol Chem, 277, 15834–15842.

    PubMed  CAS  Google Scholar 

  • Misko A, Jiang S, Wegorzewska I, Milbrandt J, and Baloh RH (2010) Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci, 30, 4232–4240.

    PubMed  CAS  Google Scholar 

  • Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, Nunomura A, Szweda LI, Aliev G, Smith MA, Zhu X, and Perry G (2007a) Autophagocytosis of mitochondria is prominent in Alzheimer disease. J Neuropathol Exp Neurol, 66, 525–532.

    PubMed  CAS  Google Scholar 

  • Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, Nunomura A, Szweda LI, Aliev G, Smith MA, Zhu X, and Perry G (2007b) Increased autophagic degradation of mitochondria in Alzheimer disease. Autophagy, 3, 614–615.

    PubMed  CAS  Google Scholar 

  • Mouli PK, Twig G, and Shirihai OS (2009) Frequency and selectivity of mitochondrial fusion are key to its quality maintenance function. Biophys J, 96, 3509–3518.

    PubMed  CAS  Google Scholar 

  • Nakada K, Inoue K, Ono T, Isobe K, Ogura A, Goto YI, Nonaka I, and Hayashi JI (2001) Inter-mitochondrial complementation: Mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat Med, 7, 934–940.

    PubMed  CAS  Google Scholar 

  • Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, and Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol, 8, e1000298.

    PubMed  Google Scholar 

  • Navratil M, Terman A, and Arriaga EA (2008) Giant mitochondria do not fuse and exchange their contents with normal mitochondria. Exp Cell Res, 314, 164–172.

    PubMed  CAS  Google Scholar 

  • Nice DC, Sato TK, Stromhaug PE, Emr SD, and Klionsky DJ (2002) Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J Biol Chem, 277, 30198–30207.

    PubMed  CAS  Google Scholar 

  • Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K, Tsujimoto Y, and Shimizu S (2009) Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature, 461, 654–658.

    PubMed  CAS  Google Scholar 

  • Nixon RA (2006) Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends Neurosci, 29, 528–535.

    PubMed  CAS  Google Scholar 

  • Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, and Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol, 64, 113–122.

    PubMed  Google Scholar 

  • Nixon RA, Yang DS, Lee JH (2008) Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy, 4, 590–599.

    Google Scholar 

  • Nowikovsky K, Reipert S, Devenish RJ, and Schweyen RJ (2007) Mdm38 protein depletion causes loss of mitochondrial K+/H  +  exchange activity, osmotic swelling and mitophagy. Cell Death Differ, 14, 1647–1656.

    PubMed  CAS  Google Scholar 

  • Okamoto K, Kondo-Okamoto N, and Ohsumi Y (2009a) A landmark protein essential for mitophagy: Atg32 recruits the autophagic machinery to mitochondria. Autophagy, 5, 1203–1205.

    PubMed  CAS  Google Scholar 

  • Okamoto K, Kondo-Okamoto N, and Ohsumi Y (2009b) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell, 17, 87–97.

    PubMed  CAS  Google Scholar 

  • Orenstein SJ and Cuervo AM (2010) Chaperone-mediated autophagy: Molecular mechanisms and physiological relevance. Semin Cell Dev Biol.

    Google Scholar 

  • Park J, Lee G, and Chung J (2009) The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process. Biochem Biophys Res Commun, 378, 518–523.

    PubMed  CAS  Google Scholar 

  • Park KS, Wiederkehr A, Kirkpatrick C, Mattenberger Y, Martinou JC, Marchetti P, Demaurex N, and Wollheim CB (2008) Selective actions of mitochondrial fission/fusion genes on metabolism-secretion coupling in insulin-releasing cells. J Biol Chem, 283, 33347–33356.

    PubMed  CAS  Google Scholar 

  • Parone PA, Da CS, Tondera D, Mattenberger Y, James DI, Maechler P, Barja F, and Martinou JC (2008) Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS One, 3, e3257.

    PubMed  Google Scholar 

  • Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, and Pallanck LJ (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA, 105, 1638–1643.

    PubMed  CAS  Google Scholar 

  • Poole AC, Thomas RE, Yu S, Vincow ES, and Pallanck L (2010) The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS One, 5, e10054.

    PubMed  Google Scholar 

  • Praefcke GJ and McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol, 5, 133–147.

    PubMed  CAS  Google Scholar 

  • Prigione A, Piazza F, Brighina L, Begni B, Galbussera A, Difrancesco JC, Andreoni S, Piolti R, and Ferrarese C (2010) Alpha-synuclein nitration and autophagy response are induced in peripheral blood cells from patients with Parkinson disease. Neurosci Lett, 477, 6–10.

    PubMed  CAS  Google Scholar 

  • Reggiori F, Tucker KA, Stromhaug PE, and Klionsky DJ (2004) The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell, 6, 79–90.

    PubMed  CAS  Google Scholar 

  • Sandebring A, Thomas KJ, Beilina A, Vander BM, Cleland MM, Ahmad R, Miller DW, Zambrano I, Cowburn RF, Behbahani H, Cedazo-Minguez A, and Cookson MR (2009) Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1. PLoS One, 4, e5701.

    PubMed  Google Scholar 

  • Santel A and Fuller MT (2001) Control of mitochondrial morphology by a human mitofusin. J Cell Sci, 114, 867–874.

    PubMed  CAS  Google Scholar 

  • Santos RX, Correia SC, Wang X, Perry G, Smith MA, Moreira PI, and Zhu X (2010) A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer’s disease. J Alzheimers Dis, 20 Suppl 2, S401-S412.

    PubMed  Google Scholar 

  • Saotome M, Safiulina D, Szabadkai G, Das S, Fransson A, Aspenstrom P, Rizzuto R, and Hajnoczky G (2008) Bidirectional Ca2+−dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci USA, 105, 20728–20733.

    PubMed  CAS  Google Scholar 

  • Scheckhuber CQ, Erjavec N, Tinazli A, Hamann A, Nystrom T, and Osiewacz HD (2007) Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol, 9, 99–105.

    PubMed  CAS  Google Scholar 

  • Song Z, Chen H, Fiket M, Alexander C, and Chan DC (2007) OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol, 178, 749–755.

    PubMed  CAS  Google Scholar 

  • Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T, Sawada N, Yamada A, Mizushima N, Uchiyama Y, Kominami E, Tanaka K, and Komatsu M (2008) The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell, 19, 4762–4775.

    PubMed  CAS  Google Scholar 

  • Stack JH, DeWald DB, Takegawa K, and Emr SD (1995) Vesicle-mediated protein transport: regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast. J Cell Biol, 129, 321–334.

    PubMed  CAS  Google Scholar 

  • Stephenson FA (2010) Activity-dependent immobilization of mitochondria: the role of miro. Front Mol Neurosci, 3, 9.

    PubMed  Google Scholar 

  • Sulzer D (2007) Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci, 30, 244–250.

    PubMed  CAS  Google Scholar 

  • Surmeier DJ, Guzman JN, Sanchez-Padilla J, and Goldberg JA (2010) What causes the death of dopaminergic neurons in Parkinson’s disease? Prog Brain Res, 183, 59–77.

    PubMed  CAS  Google Scholar 

  • Takeshige K, Baba M, Tsuboi S, Noda T, and Ohsumi Y (1992) Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol, 119, 301–311.

    PubMed  CAS  Google Scholar 

  • Tal R, Winter G, Ecker N, Klionsky DJ, and Abeliovich H (2007) Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J Biol Chem, 282, 5617–5624.

    PubMed  CAS  Google Scholar 

  • Tanida I, Sou YS, Minematsu-Ikeguchi N, Ueno T, and Kominami E (2006) Atg8L/Apg8L is the fourth mammalian modifier of mammalian Atg8 conjugation mediated by human Atg4B, Atg7 and Atg3. FEBS J, 273, 2553–2562.

    PubMed  CAS  Google Scholar 

  • Terman A, Kurz T, Gustafsson B, Brunk UT (2006) Lysosomal Labilization. IUBMB Life, 58, 531–539.

    Google Scholar 

  • Terman A, Kurz T, Navratil M, Arriaga EA, and Brunk UT (2010) Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal, 12, 503–535.

    PubMed  CAS  Google Scholar 

  • Thomas KJ, McCoy MK, Blackinton J, Beilina A, van der BM, Sandebring A, Miller D, Maric D, Cedazo-Minguez A, and Cookson MR (2010) DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum Mol Genet.

    Google Scholar 

  • Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, and Shirihai OS (2008a) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J, 27, 433–446.

    PubMed  CAS  Google Scholar 

  • Twig G, Hyde B, and Shirihai OS (2008b) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta, 1777, 1092–1097.

    PubMed  CAS  Google Scholar 

  • Twig G, Liu X, Liesa M, Wikstrom JD, Molina AJ, Las G, Yaniv G, Hajnoczky G, and Shirihai OS (2010) Biophysical properties of mitochondrial fusion events in pancreatic beta-cells and cardiac cells unravel potential control mechanisms of its selectivity. Am J Physiol Cell Physiol, 299, C477-C487.

    PubMed  CAS  Google Scholar 

  • Twig G and Shirihai OS (2010) The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal.

    Google Scholar 

  • Vila M, Bove J, Dehay B, Rodriguez-Muela N, and Boya P (2010) Lysosomal membrane permeabilization in Parkinson disease. Autophagy, 7, 98–100.

    Google Scholar 

  • Vives-Bauza C and Przedborski S (2010) PINK1 points Parkin to mitochondria. Autophagy, 6.

    Google Scholar 

  • Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrane J, Moore DJ, Dawson VL, Grailhe R, Dawson TM, Li C, Tieu K, and Przedborski S (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA, 107, 378–383.

    PubMed  CAS  Google Scholar 

  • Wang X and Schwarz TL (2009) The mechanism of Ca2+ −dependent regulation of kinesin-mediated mitochondrial motility. Cell, 136, 163–174.

    PubMed  CAS  Google Scholar 

  • Weber TA and Reichert AS (2010) Impaired quality control of mitochondria: aging from a new perspective. Exp Gerontol, 45, 503–511.

    PubMed  CAS  Google Scholar 

  • Weihofen A, Thomas KJ, Ostaszewski BL, Cookson MR, and Selkoe DJ (2009) Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry, 48, 2045–2052.

    PubMed  CAS  Google Scholar 

  • White KE, Davies VJ, Hogan VE, Piechota MJ, Nichols PP, Turnbull DM, and Votruba M (2009) OPA1 deficiency associated with increased autophagy in retinal ganglion cells in a murine model of dominant optic atrophy. Invest Ophthalmol Vis Sci, 50, 2567–2571.

    PubMed  Google Scholar 

  • Whitworth AJ and Pallanck LJ (2009) The PINK1/Parkin pathway: a mitochondrial quality control system? J Bioenerg Biomembr, 41, 499–503.

    PubMed  CAS  Google Scholar 

  • Wikstrom JD, Twig G, and Shirihai OS (2009) What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy? Int J Biochem Cell Biol, 41, 1914–1927.

    PubMed  CAS  Google Scholar 

  • Wood-Kaczmar A, Gandhi S, Yao Z, Abramov AY, Miljan EA, Keen G, Stanyer L, Hargreaves I, Klupsch K, Deas E, Downward J, Mansfield L, Jat P, Taylor J, Heales S, Duchen MR, Latchman D, Tabrizi SJ, and Wood NW (2008) PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS One, 3, e2455.

    PubMed  Google Scholar 

  • Yang Y, Ouyang Y, Yang L, Beal MF, McQuibban A, Vogel H, and Lu B (2008) Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci USA, 105, 7070–7075.

    PubMed  CAS  Google Scholar 

  • Yang Z and Klionsky DJ (2010b) Eaten alive: a history of macroautophagy. Nat Cell Biol, 12, 814–822.

    PubMed  CAS  Google Scholar 

  • Yang Z and Klionsky DJ (2010b) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol, 22, 124–131.

    PubMed  CAS  Google Scholar 

  • Yen WL and Klionsky DJ (2008) How to live long and prosper: autophagy, mitochondria, and aging. Physiology (Bethesda ), 23, 248–262.

    CAS  Google Scholar 

  • Young AR, Chan EY, Hu XW, Kochl R, Crawshaw SG, High S, Hailey DW, Lippincott-Schwartz J, and Tooze SA (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci, 119, 3888–3900.

    PubMed  CAS  Google Scholar 

  • Young JE, Martinez RA, and La Spada AR (2009) Nutrient deprivation induces neuronal autophagy and implicates reduced insulin signaling in neuroprotective autophagy activation. J Biol Chem, 284, 2363–2373.

    PubMed  CAS  Google Scholar 

  • Yue Z (2007) Regulation of neuronal autophagy in axon: implication of autophagy in axonal function and dysfunction/degeneration. Autophagy, 3, 139–141.

    PubMed  CAS  Google Scholar 

  • Yue Z, Friedman L, Komatsu M, and Tanaka K (2009) The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. Biochim Biophys Acta, 1793, 1496–1507.

    PubMed  CAS  Google Scholar 

  • Zhang CL, Ho PL, Kintner DB, Sun D, and Chiu SY (2010) Activity-dependent regulation of mitochondrial motility by calcium and Na/K-ATPase at nodes of Ranvier of myelinated nerves. J Neurosci, 30, 3555–3566.

    PubMed  CAS  Google Scholar 

  • Zhang J, Kundu M, and Ney PA (2009) Mitophagy in mammalian cells: the reticulocyte model. Methods Enzymol, 452, 227–245.

    PubMed  CAS  Google Scholar 

  • Zhang J and Ney PA (2008) NIX induces mitochondrial autophagy in reticulocytes. Autophagy, 4, 354–356.

    PubMed  Google Scholar 

  • Zhang J and Ney PA (2009) Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ, 16, 939–946.

    PubMed  CAS  Google Scholar 

  • Zhang Y, Qi H, Taylor R, Xu W, Liu LF, and Jin S (2007) The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S cerevisiae strains. Autophagy, 3, 337–346.

    PubMed  CAS  Google Scholar 

  • Zhou X, Babu JR, Da SS, Shu Q, Graef IA, Oliver T, Tomoda T, Tani T, Wooten MW, and Wang F (2007) Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc Natl Acad Sci USA, 104, 5842–5847.

    PubMed  CAS  Google Scholar 

  • Zhu J and Chu CT (2010) Mitochondrial dysfunction in Parkinson’s disease. J Alzheimers Dis, 20 Suppl 2, S325-S334.

    PubMed  CAS  Google Scholar 

  • Zhu JH, Guo F, Shelburne J, Watkins S, and Chu CT (2003) Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol, 13, 473–481.

    PubMed  CAS  Google Scholar 

  • Ziviani E, Tao RN, and Whitworth AJ (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci USA, 107, 5018–5023.

    PubMed  CAS  Google Scholar 

  • Ziviani E and Whitworth AJ (2010) How could Parkin-mediated ubiquitination of mitofusin promote mitophagy? Autophagy, 6.

    Google Scholar 

  • Zorzano A, Liesa M, Sebastian D, Segales J, and Palacin M (2010) Mitochondrial fusion proteins: dual regulators of morphology and metabolism. Semin Cell Dev Biol, 21, 566–574.

    PubMed  CAS  Google Scholar 

  • Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E, Patitucci A, Senderek J, Parman Y, Evgrafov O, Jonghe PD, Takahashi Y, Tsuji S, Pericak-Vance MA, Quattrone A, Battaloglu E, Polyakov AV, Timmerman V, Schroder JM, and Vance JM (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet, 36, 449–451.

    PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs. Marc Liesa, Gilad Twig, and Dani Dagan for insightful comments during the writing of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orian Shirihai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stiles, L., Ferree, A., Shirihai, O. (2011). Mitochondrial Dynamics and Autophagy. In: Lu, B. (eds) Mitochondrial Dynamics and Neurodegeneration. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1291-1_3

Download citation

Publish with us

Policies and ethics