Skip to main content

Biosynthesis of Metallic Nanoparticles and Their Applications

  • Chapter
  • First Online:
Intracellular Delivery

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 5))

Abstract

Biosynthesis and biofabrication of the metallic NPs have became an important approach to NP preparation. They are not only equal with the chemical or physical methods, but also offer quite a few assets compared to classical tacks. In this review, we present comprehensive overview of existing published records, which include clear and realistic application of biosynthesized metallic NPs. Our survey covers NP utilization from biosorption and catalysis to medicinal and sensing applications. Moreover, we add current review references and comparison (or synergy) with chemical and physical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NP:

nanoparticle

AuNP:

gold nanoparticle

AgNP:

silver nanoparticle

PdNP:

palladium nanoparticle

PEI:

polyethylenimine

CP:

chlorophenol

PCB:

polychlorinated bifenyl

PBDE:

polybrominated diphenyl ether

TCPP:

tris(chloroisopropyl)phosphate

G+:

Gram positive

G−:

Gram negative

γ-HCH:

γ-hexachlorocyclohexane (lindane)

ICM:

iodinated contrast media

TCE:

trichloroethylene

bioPd:

biofabricated palladium

PEM:

polymer electrolyte membrane

4-NP:

p-nitrophenol; 4-nitrophenol

SERS:

surface enhanced Raman scattering

IR:

infra red

BM:

bacterial magnetosome

PTP:

tyrosine phosphatase

PVDF:

polyvinylidene fluoride

GCE:

glassy carbon electrode

QD:

quantum dot

References

  • Adarsh S, et al. (2010) Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics. Nanotechnology 21 (44):442001

    Google Scholar 

  • Ahmad A, Jagadale T, Dhas V, Khan S, Patil S, Pasricha R, Ravi V, Ogale S (2007) Fungus-Based Synthesis of Chemically Difficult-To-Synthesize Multifunctional Nanoparticles of CuAlO2. Advanced Materials 19 (20):3295–3299. doi:10.1002/adma.200602605

    CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces 28 (4):313–318. doi:10.1016/s0927-7765(02)00174-1

    CAS  Google Scholar 

  • Alanazi FK, Radwan AA, Alsarra IA (2010) Biopharmaceutical applications of nanogold. Saudi Pharmaceutical Journal 18 (4):179–193. doi:10.1016/j.jsps.2010.07.002

    CAS  Google Scholar 

  • Andújar JM, Segura F (2009) Fuel cells: History and updating. A walk along two centuries. Renewable and Sustainable Energy Reviews 13 (9):2309–2322. doi:10.1016/j.rser.2009.03.015

    Google Scholar 

  • Ankamwar B, Damle C, Ahmad A, Sastry M (2005a) Biosynthesis of Gold and Silver Nanoparticles Using Emblica Officinalis Fruit Extract, Their Phase Transfer and Transmetallation in an Organic Solution. Journal of Nanoscience and Nanotechnology 5:1665–1671. doi:10.1166/jnn.2005.184

    PubMed  CAS  Google Scholar 

  • Ankamwar B, Chaudhary M, Sastry M (2005b) Gold Nanotriangles Biologically Synthesized using Tamarind Leaf Extract and Potential Application in Vapor Sensing. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 35 (1):19–26

    CAS  Google Scholar 

  • Arief VO, Trilestari K, Sunarso J, Indraswati N, Ismadji S (2008) Recent Progress on Biosorption of Heavy Metals from Liquids Using Low Cost Biosorbents: Characterization, Biosorption Parameters and Mechanism Studies. Clean-Soil Air Water 36 (12):937–962. doi:10.1002/clen.200800167

    CAS  Google Scholar 

  • Bankar A, Joshi B, Ravi Kumar A, Zinjarde S (2010) Banana peel extract mediated synthesis of gold nanoparticles. Colloids and Surfaces B: Biointerfaces 80 (1):45–50. doi:10.1016/j.colsurfb.2010.05.029

    CAS  Google Scholar 

  • Bao H, Hao N, Yang Y, Zhao D (2010a) Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Research 3 (7):481–489. doi:10.1007/s12274-010-0008-6

    CAS  Google Scholar 

  • Bao H, Lu Z, Cui X, Qiao Y, Guo J, Anderson JM, Li CM (2010b) Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomaterialia 6 (9):3534–3541. doi:10.1016/j.actbio.2010.03.030

    PubMed  CAS  Google Scholar 

  • Barakat MA (2010) New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry In Press, Corrected Proof. doi:10.1016/j.arabjc.2010.07.019

    Google Scholar 

  • Basha KS, Govindaraju K, Manikandan R, Ahn JS, Bae EY, Singaravelu G (2010) Phytochemical mediated gold nanoparticles and their PTP 1B inhibitory activity. Colloids and Surfaces B: Biointerfaces 75 (2):405–409. doi:10.1016/j.colsurfb.2009.09.008

    Google Scholar 

  • Baxter-Plant VS, Mikheenko IP, Macaskie LE (2003) Sulphate-reducing bacteria, palladium and the reductive dehalogenation of chlorinated aromatic compounds. Biodegradation 14 (2):83–90. doi:10.1023/a:1024084611555

    PubMed  CAS  Google Scholar 

  • Baxter-Plant VS, Mikheenko IP, Robson M, Harrad SJ, Macaskie LE (2004) Dehalogenation of chlorinated aromatic compounds using a hybrid bioinorganic catalyst on cells of <i>Desulfovibrio desulfuricans</i&gt. Biotechnology Letters 26 (24):1885–1890. doi:10.1007/s10529-004-6039-x

    PubMed  CAS  Google Scholar 

  • Beauregard DA, Yong P, Macaskie LE, Johns ML (2010) Using non-invasive magnetic resonance imaging (MRI) to assess the reduction of Cr(VI) using a biofilm–palladium catalyst. Biotechnology and Bioengineering 107 (1):11–20. doi:10.1002/bit.22791

    PubMed  CAS  Google Scholar 

  • Binupriya AR, Sathishkumar M, Yun S-I (2009) Myco-crystallization of Silver Ions to Nanosized Particles by Live and Dead Cell Filtrates of Aspergillus oryzae var. viridis and Its Bactericidal Activity toward Staphylococcus aureus KCCM 12256. Industrial & Engineering Chemistry Research 49 (2):852–858. doi:10.1021/ie9014183

    Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Letters in Applied Microbiology 48 (2):173–179. doi:10.1111/j.1472-765X.2008.02510.x

    PubMed  CAS  Google Scholar 

  • Bonet F, Tekaia-Elhsissen K, Sarathy KV (2000) Study of interaction of ethylene glycol/PVP phase on noble metal powders prepared by polyol process. Bulletin of Materials Science 23 (3):165–168

    CAS  Google Scholar 

  • Bunge M, Søbjerg LS, Rotaru A-E, Gauthier D, Lindhardt AT, Hause G, Finster K, Kingshott P, Skrydstrup T, Meyer RL (2010) Formation of palladium(0) nanoparticles at microbial surfaces. Biotechnology and Bioengineering 107 (2):206–215. doi:10.1002/bit.22801

    PubMed  CAS  Google Scholar 

  • Creamer NJ, Deplanche K, Snape TJ, Mikheenko IP, Yong P, Samyahumbi D, Wood J, Pollmann K, Selenska-Pobell S, Macaskie LE (2008) A biogenic catalyst for hydrogenation, reduction and selective dehalogenation in non-aqueous solvents. Hydrometallurgy 94 (1–4):138–143. doi:10.1016/j.hydromet.2008.05.029

    CAS  Google Scholar 

  • Creamer NJ, Mikheenko IP, Yong P, Deplanche K, Sanyahumbi D, Wood J, Pollmann K, Merroun M, Selenska-Pobell S, Macaskie LE (2007) Novel supported Pd hydrogenation bionanocatalyst for hybrid homogeneous/heterogeneous catalysis. Catalysis Today 128 (1–2):80–87. doi:10.1016/j.cattod.2007.04.014

    CAS  Google Scholar 

  • Daniel M-C, Astruc D (2004) Gold Nanoparticles:  Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews 104 (1):293–346. doi:10.1021/cr030698+

    PubMed  CAS  Google Scholar 

  • Das D, Das N, Mathew L (2010) Kinetics, equilibrium and thermodynamic studies on biosorption of Ag(I) from aqueous solution by macrofungus Pleurotus platypus. J Hazard Mater 184 (1–3):765–774. doi:10.1016/j.jhazmat.2010.08.105

    PubMed  CAS  Google Scholar 

  • Das N (2010) Recovery of precious metals through biosorption – A review. Hydrometallurgy 103 (1–4):180–189. doi:10.1016/j.hydromet.2010.03.016

    CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold Nanoparticles: Microbial Synthesis and Application in Water Hygiene Management. Langmuir 25 (14):8192–8199. doi:10.1021/la900585p

    PubMed  CAS  Google Scholar 

  • Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids and Surfaces B: Biointerfaces 79 (1):5–18. doi:10.1016/j.colsurfb.2010.03.029

    CAS  Google Scholar 

  • De Gusseme B, Du Laing G, Hennebel T, Renard P, Chidambaram D, Fitts JP, Bruneel E, Van Driessche I, Verbeken K, Boon N, Verstraete W (2010a) Virus Removal by Biogenic Cerium. Environmental Science & Technology 44 (16):6350–6356. doi:10.1021/es100100p

    Google Scholar 

  • De Gusseme B, Sintubin L, Baert L, Thibo E, Hennebel T, Vermeulen G, Uyttendaele M, Verstraete W, Boon N (2010b) Biogenic Silver for Disinfection of Water Contaminated with Viruses. Applied and Environmental Microbiology 76 (4):1082–1087. doi:10.1128/aem.02433-09

    PubMed  Google Scholar 

  • De Stefano M, De Stefano L, Congestri R (2008) Functional morphology of micro- and nanostructures in two distinct diatom frustules. Superlattices and Microstructures 46 (1–2):64–68. doi:10.1016/j.spmi.2008.12.007

    Google Scholar 

  • De Windt W, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environmental Microbiology 7 (3):314–325. doi:10.1111/j.1462-2920.2005.00696.x

    PubMed  Google Scholar 

  • De Windt W, Boon N, Van den Bulcke J, Rubberecht L, Prata F, Mast J, Hennebel T, Verstraete W (2006) Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis. Antonie van Leeuwenhoek 90 (4):377–389. doi:10.1007/s10482-006-9088-4

    PubMed  CAS  Google Scholar 

  • Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE (2010) Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiology 156 (9):2630–2640. doi:10.1099/mic.0.036681-0

    PubMed  CAS  Google Scholar 

  • Deplanche K, Snape TJ, Hazrati S, Harrad S, Macaskie LE (2009) Versatility of a new bioinorganic catalyst: Palladized cells of Desulfovibrio desulfuricans and application to dehalogenation of flame retardant materials. Environmental Technology 30 (7):681–692

    PubMed  CAS  Google Scholar 

  • Dimitriadis S, Nomikou N, McHale AP (2007) Pt-based electro-catalytic materials derived from biosorption processes and their exploitation in fuel cell technology. Biotechnology Letters 29 (4):545–551. doi:10.1007/s10529-006-9289-y

    PubMed  CAS  Google Scholar 

  • Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5[alpha] and its application on direct electrochemistry of hemoglobin. Electrochemistry Communications 9 (5):1165–1170. doi:10.1016/j.elecom.2007.01.007

    CAS  Google Scholar 

  • Durán N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. Journal of Biomedical Nanotechnology 3 (2):203–208. doi:10.1166/jbn.2007.022

    Google Scholar 

  • El-Rafie MH, Mohamed AA, Shaheen TI, Hebeish A (2010) Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydrate Polymers 80 (3):779–782. doi:10.1016/j.carbpol.2009.12.028

    CAS  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased Synthesis of Silver Nanoparticles and Their Incorporation into Sodium Alginate Films for Vegetable and Fruit Preservation. Journal of Agricultural and Food Chemistry 57 (14):6246–6252. doi:10.1021/jf900337h

    Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venkatesan R (2010a) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine 6 (1):103–109

    CAS  Google Scholar 

  • Fayaz AM, Girilal M, Mahdy SA, Somsundar SS, Venkatesan R, Kalaichelvan PT (2011) Vancomycin bound bigenic gold nanoparticles: A different perspective for development of anti VRSA agents. Process Biochemistry 46 (3):636–641. doi:10.1016/j.procbio.2010.11.001

    Google Scholar 

  • Fayaz AM, Tiwary CS, Kalaichelvan PT, Venkatesan R (2010b) Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride. Colloid Surf B-Biointerfaces 75 (1):175–178. doi:10.1016/j.colsurfb.2009.08.028

    CAS  Google Scholar 

  • Fukuoka A, Araki H, Sakamoto Y, Sugimoto N, Tsukada H, Kumai Y, Akimoto Y, Ichikawa M (2002) Template Synthesis of Nanoparticle Arrays of Gold and Platinum in Mesoporous Silica Films. Nano Letters 2 (7):793–795. doi:10.1021/nl0256107

    CAS  Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology 84 (1):13–28. doi:10.1002/jctb.1999

    CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology-Sgm 156:609–643. doi:10.1099/mic.0.037143-0

    CAS  Google Scholar 

  • Gade A, Gaikwad S, Tiwari V, Yadav A, Ingle A, Rai M (2010) Biofabrication of Silver Nanoparticles by Opuntia ficus-indica: In vitro Antibacterial Activity and Study of the Mechanism Involved in the Synthesis. Current Nanoscience 6 (4):370–375. doi:10.2174/157341310791659026

    CAS  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology and Medicine 5 (4):382–386. doi:10.1016/j.nano.2009.06.005

    CAS  Google Scholar 

  • Gauthier D, Søbjerg LS, Jensen KM, Lindhardt AT, Bunge M, Finster K, Meyer RL, Skrydstrup T (2010) Environmentally Benign Recovery and Reactivation of Palladium from Industrial Waste by Using Gram-Negative Bacteria. ChemSusChem 3 (9):1036–1039. doi:10.1002/cssc.201000091

    PubMed  CAS  Google Scholar 

  • Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G (2010) Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. Journal of Biopesticides 3 (1 Special Issue):394–399

    CAS  Google Scholar 

  • Guimarães BCM, Arends JBA, van der Ha D, Van de Wiele T, Boon N, Verstraete W (2010) Microbial services and their management: Recent progresses in soil bioremediation technology. Applied Soil Ecology 46 (2):157–167. doi:10.1016/j.apsoil.2010.06.018

    Google Scholar 

  • Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Analytica Chimica Acta 598 (2):181–192. doi:10.1016/j.aca.2007.07.054

    PubMed  CAS  Google Scholar 

  • Harrad S, Robson M, Hazrati S, Baxter-Plant VS, Deplanche K, Redwood MD, Macaskie LE (2007) Dehalogenation of polychlorinated biphenyls and polybrominated diphenyl ethers using a hybrid bioinorganic catalyst. Journal of Environmental Monitoring 9 (4):314–318

    PubMed  CAS  Google Scholar 

  • Haverkamp R, Marshall A, Agterveld D (2007) Pick your carats: nanoparticles of goldsilvercopper alloy produced in vivo. Journal of Nanoparticle Research 9 (4):697–700. doi:10.1007/s11051-006-9198-y

    CAS  Google Scholar 

  • Hennebel T, De Corte S, Vanhaecke L, Vanherck K, Forrez I, De Gusseme B, Verhagen P, Verbeken K, Van der Bruggen B, Vankelecom I, Boon N, Verstraete W (2010) Removal of diatrizoate with catalytically active membranes incorporating microbially produced palladium nanoparticles. Water Research 44 (5):1498–1506. doi:10.1016/j.watres.2009.10.041

    PubMed  CAS  Google Scholar 

  • Hennebel T, De Gusseme B, Boon N, Verstraete W (2009a) Biogenic metals in advanced water treatment. Trends in Biotechnology 27 (2):90–98. doi:10.1016/j.tibtech.2008.11.002

    PubMed  CAS  Google Scholar 

  • Hennebel T, Simoen H, De Windt W, Verloo M, Boon N, Verstraete W (2009b) Biocatalytic dechlorination of trichloroethylene with bio-palladium in a pilot-scale membrane reactor. Biotechnology and Bioengineering 102 (4):995–1002. doi:10.1002/bit.22138

    PubMed  CAS  Google Scholar 

  • Hennebel T, Verhagen P, Simoen H, Gusseme BD, Vlaeminck SE, Boon N, Verstraete W (2009c) Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor. Chemosphere 76 (9):1221–1225. doi:10.1016/j.chemosphere.2009.05.046

    PubMed  CAS  Google Scholar 

  • Huang JL, Wang WT, Lin LQ, Li QB, Lin WS, Li M, Mann S (2009) A General Strategy for the Biosynthesis of Gold Nanoparticles by Traditional Chinese Medicines and Their Potential Application as Catalysts. Chemistry-an Asian Journal 4 (7):1050–1054. doi:10.1002/asia.200900064

    CAS  Google Scholar 

  • Humphries AC, Mikheenko IP, Macaskie LE (2006) Chromate reduction by immobilized palladized sulfate-reducing bacteria. Biotechnology and Bioengineering 94 (1):81–90. doi:10.1002/bit.20814

    PubMed  CAS  Google Scholar 

  • Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R (2009) Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation - a novel phenomenon. Journal of Applied Phycology 21 (1):145–152. doi:10.1007/s10811-008-9343-3

    CAS  Google Scholar 

  • Chakraborty N, Pal R, Ramaswami A, Nayak D, Lahiri S (2006) Diatom: A potential bio-accumulator of gold. Journal of Radioanalytical and Nuclear Chemistry 270 (3):645–649. doi:10.1007/s10967-006-0475-0

    CAS  Google Scholar 

  • Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology 28 (11):580–588. doi:10.1016/j.tibtech.2010.07.006

    PubMed  CAS  Google Scholar 

  • Chen X, Schluesener HJ (2008) Nanosilver: A nanoproduct in medical application. Toxicology Letters 176 (1):1–12. doi:10.1016/j.toxlet.2007.10.004

    PubMed  CAS  Google Scholar 

  • Cherukuri P, Glazer ES, Curley SA (2010) Targeted hyperthermia using metal nanoparticles. Advanced Drug Delivery Reviews 62 (3):339–345. doi:10.1016/j.addr.2009.11.006

    PubMed  CAS  Google Scholar 

  • Chidambaram D, Hennebel T, Taghavi S, Mast J, Boon N, Verstraete W, van der Lelie D, Fitts JP (2010) Concomitant Microbial Generation of Palladium Nanoparticles and Hydrogen To Immobilize Chromate. Environmental Science & Technology 44 (19):7635–7640. doi:10.1021/es101559r

    CAS  Google Scholar 

  • Cho K-H, Park J-E, Osaka T, Park S-G (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta 51 (5):956–960. doi:10.1016/j.electacta.2005.04.071

    CAS  Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation - the prospects for practical applications. Environment International 36 (3):299–307. doi:10.1016/j.envint.2009.12.001

    PubMed  CAS  Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sönnichsen C, Rai M (2008) Mycosynthesis of Silver Nanoparticles Using the Fungus Fusarium acuminatum and its Activity Against Some Human Pathogenic Bacteria. Current Nanoscience 4:141–144. doi:10.2174/157341308784340804

    CAS  Google Scholar 

  • Iskandar F (2009) Nanoparticle processing for optical applications - A review. Advanced Powder Technology 20 (4):283–292. doi:10.1016/j.apt.2009.07.001

    CAS  Google Scholar 

  • Jaidev LR, Narasimha G (2010) Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids and Surfaces B: Biointerfaces 81 (2):430–433. doi:10.1016/j.colsurfb.2010.07.033

    CAS  Google Scholar 

  • Jha AK, Prasad K (2010) Ferroelectric BaTiO3 nanoparticles: Biosynthesis and characterization. Colloids and Surfaces B: Biointerfaces 75 (1):330–334. doi:10.1016/j.colsurfb.2009.09.005

    CAS  Google Scholar 

  • Jia L, Zhang Q, Li Q, Song H (2009) The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis : long lifetime nanocatalysts for p -nitrotoluene hydrogenation. Nanotechnology 20 (38):385601

    PubMed  Google Scholar 

  • Jia XP, Ma XY, Wei DW, Dong J, Qian WP (2008) Direct formation of silver nanoparticles in cuttlebone-derived organic matrix for catalytic applications. Colloids and Surfaces a-Physicochemical and Engineering Aspects 330 (2–3):234–240. doi:10.1016/j.colsurfa.2008.08.016

    CAS  Google Scholar 

  • Kavamura VN, Esposito E (2009) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnology Advances 28 (1):61–69. doi:10.1016/j.biotechadv.2009.09.002

    Google Scholar 

  • Khomutov GB, Gubin SP (2002) Interfacial synthesis of noble metal nanoparticles. Materials Science and Engineering: C 22 (2):141–146. doi:10.1016/s0928-4931(02)00162-5

    Google Scholar 

  • Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnology and Bioengineering 78 (5):583–588. doi:10.1002/bit.10233

    PubMed  CAS  Google Scholar 

  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B: Biointerfaces 76 (1):50–56. doi:10.1016/j.colsurfb.2009.10.008

    CAS  Google Scholar 

  • Kulkarni M, Chaudhari A (2007) Microbial remediation of nitro-aromatic compounds: An overview. J Environ Manage 85 (2):496–512. doi:10.1016/j.jenvman.2007.06.009

    PubMed  CAS  Google Scholar 

  • Kumar R, Ghosh A, Patra CR, Mukherjee P, Sastry M (2004) Gold Nanoparticles Formed within Ordered Mesoporous Silica and on Amorphous Silica. In: Zhou B, Hermans S, Somorjai G (eds) Nanoparticle in Catalysis, vol 1. Kluwer Academic/Plenum Publishers, New York, pp 111–136

    Google Scholar 

  • Lee KY, Hwang J, Lee YW, Kim J, Han SW (2007) One-step synthesis of gold nanoparticles using azacryptand and their applications in SERS and catalysis. Journal of Colloid and Interface Science 316 (2):476–481. doi:10.1016/j.jcis.2007.07.076

    PubMed  CAS  Google Scholar 

  • Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S (2009) Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochemical Engineering Journal 44 (1):19–41. doi:10.1016/j.bej.2008.12.009

    CAS  Google Scholar 

  • Lewis TA, Newcombe DA, Crawford RL (2004) Bioremediation of soils contaminated with explosives. J Environ Manage 70 (4):291–307. doi:10.1016/j.jenvman.2003.12.005

    PubMed  Google Scholar 

  • Li X, Jiang W, Sun JB, Wang GL, Guan F, Li Y (2007) Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro. Letters in Applied Microbiology 45 (1):75–81. doi:10.1111/j.1472-765X.2007.02143.x

    Google Scholar 

  • Liotta LF, Gruttadauria M, Di Carlo G, Perrini G, Librando V (2009) Heterogeneous catalytic degradation of phenolic substrates: Catalysts activity. J Hazard Mater 162 (2–3):588–606. doi:10.1016/j.jhazmat.2008.05.115

    PubMed  CAS  Google Scholar 

  • Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3 (1–2):40–47. doi:10.1016/s1748-0132(08)70014-8

    CAS  Google Scholar 

  • Mabbett AN, Lloyd JR, Macaskie LE (2002) Effect of complexing agents on reduction of Cr(VI) by Desulfovibrio vulgaris ATCC 29579. Biotechnology and Bioengineering 79 (4):389–397. doi:10.1002/bit.10361

    PubMed  CAS  Google Scholar 

  • Mabbett AN, Macaskie LE (2002) A new bioinorganic process for the remediation of Cr(VI). Journal of Chemical Technology & Biotechnology 77 (10):1169–1175. doi:10.1002/jctb.693

    CAS  Google Scholar 

  • Mabbett AN, Sanyahumbi D, Yong P, Macaskie LE (2005) Biorecovered Precious Metals from Industrial Wastes:  Single-Step Conversion of a Mixed Metal Liquid Waste to a Bioinorganic Catalyst with Environmental Application. Environmental Science & Technology 40 (3):1015–1021. doi:10.1021/es0509836

    Google Scholar 

  • Maliszewska I, Puzio M (2009) Extracellular biosynthesis and antimicrobial activity of silver nanoparticles. Acta Physica Polonica A 116:S160–S162

    CAS  Google Scholar 

  • Mallick K, Witcomb MJ, Scurrell MS (2004) Polymer stabilized silver nanoparticles: A photochemical synthesis route. Journal of Materials Science 39 (14):4459–4463. doi:10.1023/b:jmsc.0000034138.80116.50

    CAS  Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research 12 (5):1531–1551. doi:10.1007/s11051-010-9900-y

    CAS  Google Scholar 

  • Mata YN, Torres E, Blazquez ML, Ballester A, Gonzalez F, Munoz JA (2009) Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166 (2–3):612–618. doi:10.1016/j.jhazmat.2008.11.064

    PubMed  CAS  Google Scholar 

  • Merin DD, Prakash S, Bhimba BV (2010) Antibacterial screening of silver nanoparticles synthesized by marine micro algae. Asian Pacific Journal of Tropical Medicine 3 (10):797–799. doi:10.1016/s1995-7645(10)60191-5

    CAS  Google Scholar 

  • Mertens B, Blothe C, Windey K, De Windt W, Verstraete W (2007) Biocatalytic dechlorination of lindane by nano-scale particles of Pd(0) deposited on Shewanella oneidensis. Chemosphere 66 (1):99–105. doi:10.1016/j.chemosphere.2006.05.018

    PubMed  CAS  Google Scholar 

  • Morones JR, Elechieguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16 (10):2346

    PubMed  CAS  Google Scholar 

  • Moulton MC, Braydich-Stolle LK, Nadagouda MN, Kunzelman S, Hussain SM, Varma RS (2010) Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale 2 (5):763–770

    PubMed  CAS  Google Scholar 

  • Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresource Technology 101 (22):8772–8776. doi: 10.1016/j.biortech.2010.06.065

    Google Scholar 

  • Nabikhan A, Kandasamy K, Raj A, Alikunhi NM (2010) Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium–portulacastrum L. Colloids and Surfaces B: Biointerfaces 79 (2):488–493. doi:10.1016/j.colsurfb.2010.05.018

    CAS  Google Scholar 

  • Nair LS, Laurencin CT (2007) Silver nanoparticles: Synthesis and therapeutic applications. Journal of Biomedical Nanotechnology 3 (4):301–316. doi:10.1166/jbn.2007.041

    CAS  Google Scholar 

  • Narayanan R (2010) Recent Advances in Noble Metal Nanocatalysts for Suzuki and Heck Cross-Coupling Reactions. Molecules 15 (4):2124–2138. doi:10.3390/molecules15042124

    PubMed  CAS  Google Scholar 

  • Narayanan R, El-Sayed M (2008) Some Aspects of Colloidal Nanoparticle Stability, Catalytic Activity, and Recycling Potential. Topics in Catalysis 47 (1):15–21. doi:10.1007/s11244-007-9029-0

    CAS  Google Scholar 

  • Nguyen DT, Kim D-J, Kim K-S (2011) Controlled synthesis and biomolecular probe application of gold nanoparticles. Micron 42 (3):207–227. doi:10.1016/j.micron.2010.09.008

    Google Scholar 

  • Nguyen DT, Kim D-J, So MG, Kim K-S (2010) Experimental measurements of gold nanoparticle nucleation and growth by citrate reduction of HAuCl4. Advanced Powder Technology 21 (2):111–118. doi:10.1016/j.apt.2009.11.005

    CAS  Google Scholar 

  • Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticles using Pleurotus sajor caju and its microbial study. Digest Journal of Nanomaterials and Biostructures 4 (4):623–629

    Google Scholar 

  • Note C, Kosmella S, Koetz J (2006) Poly(ethyleneimine) as reducing and stabilizing agent for the formation of gold nanoparticles in w/o microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 290 (1–3):150–156. doi:10.1016/j.colsurfa.2006.05.018

    CAS  Google Scholar 

  • Ogi T, Honda R, Tamaoki K, Saitoh N, Konishi Y (2011) Direct room-temperature synthesis of a highly dispersed Pd nanoparticle catalyst and its electrical properties in a fuel cell. Powder Technology 205 (1–3):143–148. doi:10.1016/j.powtec.2010.09.004

    CAS  Google Scholar 

  • Oliveira MM, Ugarte D, Zanchet D, Zarbin AJG (2005) Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. Journal of Colloid and Interface Science 292 (2):429–435. doi:10.1016/j.jcis.2005.05.068

    PubMed  CAS  Google Scholar 

  • Orozco R, Redwood M, Yong P, Caldelari I, Sargent F, Macaskie L (2010) Towards an integrated system for bio-energy: hydrogen production by <i>Escherichia coli</i> and use of palladium-coated waste cells for electricity generation in a fuel cell. Biotechnology Letters 32 (12):1837–1845. doi:10.1007/s10529-010-0383-9

    PubMed  CAS  Google Scholar 

  • Pankhurst QA, et al. (2003) Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics 36 (13):R167

    CAS  Google Scholar 

  • Pankhurst QA, et al. (2009) Progress in applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics 42 (22):224001

    Google Scholar 

  • Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P (2010) Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Advanced Drug Delivery Reviews 62 (3):346–361. doi:10.1016/j.addr.2009.11.007

    PubMed  CAS  Google Scholar 

  • Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19 (24):245705

    Google Scholar 

  • Pérez-de-Mora A, Burgos P, Madejón E, Cabrera F, Jaeckel P, Schloter M (2006) Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biology and Biochemistry 38 (2):327–341. doi:10.1016/j.soilbio.2005.05.010

    Google Scholar 

  • Pingarrón JM, Yáñez-Sedeño P, González-Cortés A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochimica Acta 53 (19):5848–5866. doi:10.1016/j.electacta.2008.03.005

    Google Scholar 

  • Porel S, Venkatram N, Rao DN, Radhakrishnan TP (2007) In situ synthesis of metal nanoparticles in polymer matrix and their optical limiting applications. Journal of Nanoscience and Nanotechnology 7 (6):1887–1892. doi:10.1166/jnn.2007.736

    PubMed  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 27 (1):76–83. doi:10.1016/j.biotechadv.2008.09.002

    PubMed  CAS  Google Scholar 

  • Ravindra S, Murali Mohan Y, Narayana Reddy N, Mohana Raju K (2010) Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “Green Approach”. Colloids and Surfaces A: Physicochemical and Engineering Aspects 367 (1–3):31–40. doi:10.1016/j.colsurfa.2010.06.013

    Google Scholar 

  • Redwood MD, Deplanche K, Baxter-Plant VS, Macaskie LE (2008) Biomass-supported palladium catalysts on Desulfovibrio desulfuricans and Rhodobacter sphaeroides. Biotechnology and Bioengineering 99 (5):1045–1054. doi:10.1002/bit.21689

    PubMed  CAS  Google Scholar 

  • Rodríguez-Carmona E, Villaverde A (2010) Nanostructured bacterial materials for innovative medicines. Trends in Microbiology 18 (9):423–430. doi:10.1016/j.tim.2010.06.007

    PubMed  Google Scholar 

  • Roucoux A, Nowicki A, Philippot K (2008) Rhodium and Ruthenium Nanoparticles in Catalysis. Nanoparticles and Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/9783527621323.ch11

    Google Scholar 

  • Sadhasivam S, Shanmugam P, Yun K (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids and Surfaces B: Biointerfaces 81 (1):358–362. doi:10.1016/j.colsurfb.2010.07.036

    CAS  Google Scholar 

  • Saha S, Sarkar J, Chattopadhyay D, Patra S, Chakraborty A, Acharya K (2010) Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodulosa and its antimicrobial activity. Digest Journal of Nanomaterials and Biostructures 5 (4):887–895

    Google Scholar 

  • Salkar RA, Jeevanandam P, Aruna ST, Koltypin Y, Gedanken A (1999) The sonochemical preparation of amorphous silver nanoparticles. Journal of Materials Chemistry 9 (6):1333–1335

    CAS  Google Scholar 

  • Samanta S, Pyne S, Sarkar P, Sahoo GP, Bar H, Bhui DK, Misra A (2010) Synthesis of silver nanostructures of varying morphologies through seed mediated growth approach. Journal of Molecular Liquids 153 (2–3):170–173. doi:10.1016/j.molliq.2010.02.008

    CAS  Google Scholar 

  • Saravanan M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids and Surfaces B: Biointerfaces 77 (2):214–218. doi:10.1016/j.colsurfb.2010.01.026

    CAS  Google Scholar 

  • Sarkar R, Kumbhakar P, MIitra AK (2010) Green synthesis of silver nanoparticles and its optical properties. Digest Journal of Nanomaterials and Biostructures 5 (2):491–496

    Google Scholar 

  • Sathishkumar M, Mahadevan A, Vijayaraghavan K, Pavagadhi S, Balasubramanian R (2010a) Green Recovery of Gold through Biosorption, Biocrystallization, and Pyro-Crystallization. Industrial & Engineering Chemistry Research 49 (16):7129–7135. doi:10.1021/ie100104j

    CAS  Google Scholar 

  • Sathishkumar M, Sneha K, Won SW, Cho CW, Kim S, Yun YS (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids and Surfaces B: Biointerfaces 73 (2):332–338. doi:10.1016/j.colsurfb.2009.06.005

    CAS  Google Scholar 

  • Sathishkumar M, Sneha K, Yun Y-S (2010b) Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresource Technology 101 (20):7958-7965. doi:10.1016/j.biortech.2010.05.051

    CAS  Google Scholar 

  • Sathyavathi R, Krishna MB, Rao SV, Saritha R, Rao DN (2010) Biosynthesis of Silver Nanoparticles Using Coriandrum Sativum Leaf Extract and Their Application in Nonlinear Optics. Advanced Science Letters 3 (2):138–143. doi:10.1166/asl.2010.1099

    CAS  Google Scholar 

  • Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum. Science and Technology of Advanced Materials 9 (3):035012

    Google Scholar 

  • Selvakannan PR, Mandal S, Phadtare S, Gole A, Pasricha R, Adyanthaya SD, Sastry M (2004) Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. Journal of Colloid and Interface Science 269 (1):97–102. doi:10.1016/s0021-9797(03)00616-7

    PubMed  CAS  Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular Biosynthesis of Bimetallic Au–Ag Alloy Nanoparticles. Small 1 (5):517–520. doi:10.1002/smll.200400053

    PubMed  CAS  Google Scholar 

  • Seoudi R, Shabaka A, Eisa WH, Anies B, Farage NM (2010) Effect of the prepared temperature on the size of CdS and ZnS nanoparticle. Physica B: Condensed Matter 405 (3):919–924. doi:10.1016/j.physb.2009.10.015

    CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2005) Controlling the Optical Properties of Lemongrass Extract Synthesized Gold Nanotriangles and Potential Application in Infrared-Absorbing Optical Coatings. Chemistry of Materials 17 (3):566–572. doi:10.1021/cm048292g

    CAS  Google Scholar 

  • Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresdey JL, Pal T (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environmental Science & Technology 41 (14):5137–5142. doi:10.1021/es062929a

    CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science 145 (1–2):83–96. doi:10.1016/j.cis.2008.09.002

    PubMed  CAS  Google Scholar 

  • Shchukin DG, Radziuk D, Mohwald H (2010) Ultrasonic Fabrication of Metallic Nanomaterial and Nanoalloys. In: Annual Review of Materials Research, Vol 40, vol 40. Annual Review of Materials Research. pp 345–362. doi:10.1146/annurev-matsci-070909-104540

    CAS  Google Scholar 

  • Shih C-M, Shieh Y-T, Twu Y-K (2009) Preparation of gold nanopowders and nanoparticles using chitosan suspensions. Carbohydrate Polymers 78 (2):309–315. doi:10.1016/j.carbpol.2009.04.008

    CAS  Google Scholar 

  • Shiju NR, Guliants VV (2009) Recent developments in catalysis using nanostructured materials. Applied Catalysis A: General 356 (1):1–17. doi:10.1016/j.apcata.2008.11.034

    CAS  Google Scholar 

  • Shilov V, Voitenko E, Marochko L, Podol’skaya V (2010) Electric characteristics of cellular structures containing colloidal silver. Colloid Journal 72 (1):125–132. doi:10.1134/s1061933x10010138

    CAS  Google Scholar 

  • Shirley AD, Dayanand A, Sreedhar B, Dastager SG (2010) Antimicrobial activity of silver nanoparticles synthesized from novel Streptomyces species. Digest Journal of Nanomaterials and Biostructures 5 (2):447–451

    Google Scholar 

  • Simoncic B, Tomsic B (2010) Structures of Novel Antimicrobial Agents for Textiles - A Review. Textile Research Journal 80 (16):1721–1737. doi:10.1177/0040517510363193

    CAS  Google Scholar 

  • Sobjerg LS, Gauthier D, Lindhardt AT, Bunge M, Finster K, Meyer RL, Skrydstrup T (2009) Bio-supported palladium nanoparticles as a catalyst for Suzuki-Miyaura and Mizoroki-Heck reactions. Green Chemistry 11 (12):2041–2046

    Google Scholar 

  • Sun J-B, Duan J-H, Dai S-L, Ren J, Guo L, Jiang W, Li Y (2008) Preparation and anti-tumor efficiency evaluation of doxorubicin-loaded bacterial magnetosomes: Magnetic nanoparticles as drug carriers isolated from Magnetospirillum gryphiswaldense. Biotechnology and Bioengineering 101 (6):1313–1320. doi:10.1002/bit.22011

    PubMed  CAS  Google Scholar 

  • Sun RWY, Chen R, Chung NPY, Ho CM, Lin CLS, Che CM (2005) Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem Commun (40):5059–5061. doi:10.1039/b510984a

    Google Scholar 

  • Sundaramoorthi C, Kalaivani M, Mathews DM, Palanisamy S, Kalaiselvan V, Rajasekaran A (2009) Biosynthesis of silver nanoparticles from Aspergillus niger and evaluation of its wound healing activity in experimental rat model. International Journal of PharmTech Research 1 (4):1523–1529

    CAS  Google Scholar 

  • Suresh AK, Pelletier DA, Wang W, Moon JW, Gu BH, Mortensen NP, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2010) Silver Nanocrystallites: Biofabrication using Shewanella oneidensis, and an Evaluation of Their Comparative Toxicity on Gram-negative and Gram-positive Bacteria. Environmental Science & Technology 44 (13):5210–5215. doi:10.1021/es903684r

    CAS  Google Scholar 

  • Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2009) Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chemical Reviews 110 (1):389–458. doi:10.1021/cr900137k

    Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine-Nanotechnology Biology and Medicine 6 (2):257–262. doi:10.1016/j.nano.2009.07.002

    CAS  Google Scholar 

  • Thibault-Starzyk Fdr, Daturi M, Bazin P, Marie O (2008) NO Heterogeneous Catalysis Viewed from the Angle of Nanoparticles. Nanoparticles and Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/9783527621323.ch16

    Google Scholar 

  • Tonks NK (2003) PTP1B: From the sidelines to the front lines! FEBS Letters 546 (1):140–148. doi:10.1016/s0014-5793(03)00603-3

    PubMed  CAS  Google Scholar 

  • Torres-Chavolla E, Ranasinghe RJ, Alocilja EC (2010) Characterization and Functionalization of Biogenic Gold Nanoparticles for Biosensing Enhancement. Nanotechnology, IEEE Transactions on 9 (5):533–538

    Google Scholar 

  • Tripathi A, Chandrasekaran N, Raichur AM, Mukherjee A (2009) Antibacterial Applications of Silver Nanoparticles Synthesized by Aqueous Extract of Azadirachta Indica (Neem) Leaves. Journal of Biomedical Nanotechnology 5 (1):93–98. doi:10.1166/jbn.2009.038

    PubMed  CAS  Google Scholar 

  • Ul’berg Z, Podol’skaya V, Voitenko E, Grishchenko N, Yakubenko L (2010) Formation and biological activity of preparations based on microorganisms and colloidal silver. Colloid Journal 72 (1):66–73. doi:10.1134/s1061933x10010096

    Google Scholar 

  • Vaskelis A, Tarozaite R, Jagminiene A, Tamasiunaite LT, Juskenas R, Kurtinaitiene M (2007) Gold nanoparticles obtained by Au(III) reduction with Sn(II): Preparation and electrocatalytic properties in oxidation of reducing agents. Electrochimica Acta 53 (2):407–416. doi:10.1016/j.electacta.2007.04.008

    CAS  Google Scholar 

  • Veerasamy R, Xin TZ, Gunasagaran S, Xiang TFW, Yang EFC, Jeyakumar N, Dhanaraj SA (2011) Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. Journal of Saudi Chemical Society 15 (2):113–120. doi:10.1016/j.jscs.2010.06.004

    Google Scholar 

  • Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced Drug Delivery Reviews 62 (3):284–304. doi:10.1016/j.addr.2009.11.002

    PubMed  CAS  Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine: Nanotechnology, Biology and Medicine 5 (1):33–40

    CAS  Google Scholar 

  • Vijayaraghavan K, Yun Y-S (2008) Bacterial biosorbents and biosorption. Biotechnology Advances 26 (3):266–291. doi:10.1016/j.biotechadv.2008.02.002

    Google Scholar 

  • Volesky B (2007) Biosorption and me. Water Research 41 (18):4017–4029. doi:10.1016/j.watres.2007.05.062

    PubMed  CAS  Google Scholar 

  • Wagner J, Köhler JM (2005) Continuous Synthesis of Gold Nanoparticles in a Microreactor. Nano Letters 5 (4):685–691. doi:10.1021/nl050097t

    PubMed  CAS  Google Scholar 

  • Wagner J, Tshikhudo TR, Köhler JM (2008) Microfluidic generation of metal nanoparticles by borohydride reduction. Chemical Engineering Journal 135 (1):S104–S109. doi:10.1016/j.cej.2007.07.046

    CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnology Advances 27 (2):195–226. doi:10.1016/j.biotechadv.2008.11.002

    Google Scholar 

  • Wang T, Yang L, Zhang B, Liu J (2010) Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids and Surfaces B: Biointerfaces 80 (1):94–102. doi:10.1016/j.colsurfb.2010.05.041

    CAS  Google Scholar 

  • Wang Y, He X, Wang K, Zhang X, Tan W (2009) Barbated Skullcup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in electrochemistry. Colloids and Surfaces B: Biointerfaces 73 (1):75–79. doi:10.1016/j.colsurfb.2009.04.027

    CAS  Google Scholar 

  • Widiyastuti W, Balgis R, Iskandar F, Okuyama K (2010) Nanoparticle formation in spray pyrolysis under low-pressure conditions. Chemical Engineering Science 65 (5):1846–1854. doi:10.1016/j.ces.2009.11.026

    CAS  Google Scholar 

  • Wilbur KM, Simkiss K (1979) Chapter 2.3 Carbonate Turnover and Deposition by Metazoa. In: Trudinger PA, Swaine DJ (eds) Studies in Environmental Science, vol Volume 3. Elsevier, pp 69–106

    Google Scholar 

  • Winter M, Brodd RJ (2005) What Are Batteries, Fuel Cells, and Supercapacitors? (Chem. Rev. 2003, 104, 4245  −  4269. Published on the Web 09/28/2004.). Chemical Reviews 105 (3):1021–1021. doi:10.1021/cr040110e

    Google Scholar 

  • Won SW, Mao J, Kwak I-S, Sathishkumar M, Yun Y-S (2010) Platinum recovery from ICP wastewater by a combined method of biosorption and incineration. Bioresource Technology 101 (4):1135–1140. doi:10.1016/j.biortech.2009.09.056

    PubMed  CAS  Google Scholar 

  • Wood J, Bodenes L, Bennett J, Deplanche K, Macaskie LE (2010) Hydrogenation of 2-Butyne-1,4-diol Using Novel Bio-Palladium Catalysts. Industrial & Engineering Chemistry Research 49 (3):980–988. doi:10.1021/ie900663k

    CAS  Google Scholar 

  • Xie J, Lee JY, Wang DIC, Ting YP (2007) Silver Nanoplates: From Biological to Biomimetic Synthesis. ACS Nano 1 (5):429–439. doi:10.1021/nn7000883

    PubMed  CAS  Google Scholar 

  • Xiong X, Lidstrom ME, Parviz BA (2007) Microorganisms for MEMS. Microelectromechanical Systems, Journal of 16 (2):429–444

    Google Scholar 

  • Yadav OP, Palmqvist A, Cruise N, Holmberg K (2003) Synthesis of platinum nanoparticles in microemulsions and their catalytic activity for the oxidation of carbon monoxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects 221 (1–3):131–134. doi:10.1016/s0927-7757(03)00141-9

    CAS  Google Scholar 

  • Yang GW (2007) Laser ablation in liquids: Applications in the synthesis of nanocrystals. Progress in Materials Science 52 (4):648–698. doi:10.1016/j.pmatsci.2006.10.016

    CAS  Google Scholar 

  • Yong P, Mikheenko I, Deplanche K, Redwood M, Macaskie L (2010) Biorefining of precious metals from wastes: an answer to manufacturing of cheap nanocatalysts for fuel cells and power generation via an integrated biorefinery? Biotechnology Letters 32 (12):1821–1828. doi:10.1007/s10529-010-0378-6

    PubMed  CAS  Google Scholar 

  • Yong P, Paterson-Beedle M, Mikheenko IP, Macaskie LE (2007) From bio-mineralisation to fuel cells: biomanufacture of Pt and Pd nanocrystals for fuel cell electrode catalyst. Biotechnology Letters 29 (4):539–544. doi:10.1007/s10529-006-9283-4

    PubMed  CAS  Google Scholar 

  • Zheng B, Qian L, Yuan H, Xiao D, Yang X, Paau MC, Choi MMF (2010a) Preparation of gold nanoparticles on eggshell membrane and their biosensing application. Talanta 82 (1):177–183. doi:10.1016/j.talanta.2010.04.014

    PubMed  CAS  Google Scholar 

  • Zheng B, Xie S, Qian L, Yuan H, Xiao D, Choi MMF (2011) Gold nanoparticles-coated eggshell membrane with immobilized glucose oxidase for fabrication of glucose biosensor. Sensors and Actuators B: Chemical 152 (1):49–55. doi:10.1016/j.snb.2010.09.051

    Google Scholar 

  • Zheng D, Hu C, Gan T, Dang X, Hu S (2010b) Preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nanoparticles. Sensors and Actuators B: Chemical 148 (1):247–252. doi:10.1016/j.snb.2010.04.031

    Google Scholar 

  • Zhou H, Fan F, Han T, Li X, Ding J, Zhang D, Guo Q, Ogawa H (2009) Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties. Nanotechnology 20 (8):085603

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministry of Education, Youth and Sports of Czech Republic (research grant MSM 6198910016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Schröfel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schröfel, A., Kratošová, G. (2011). Biosynthesis of Metallic Nanoparticles and Their Applications. In: Prokop, A. (eds) Intracellular Delivery. Fundamental Biomedical Technologies, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1248-5_14

Download citation

Publish with us

Policies and ethics