Skip to main content

Environmental Biomonitoring as a Tool in Risk and Impact Assessment Associated with Post-Conflict Restoration and Rehabilitation

  • Conference paper
  • First Online:
Warfare Ecology

Abstract

To understand and monitor the ecosystem responses to various contaminant loadings related to military operations in peace and war requires an integrated approach employing a network of indicators. The case study presented here is related to mercury loading in an area impacted by the First Word War and mercury mining activities. It is known that a set of indicators can be used as a measure of changing mercury concentrations in the environment over a long period of time. The major objectives of several studies implemented in Slovenia was to search for the best indicators of changes in mercury loading in air, the catchment and coastal waters, and the terrestrial environment. One of the important conclusions of these studies is that environmental biomonitoring, including human biomonitoring, offers a convenient and cost-effective way to assess spatial and temporal trends of mercury pollution and represents a good measure of mercury reactivity and availability in the environment. It can also be used as an early warning system for humans and other organisms in this ecosystem. Therefore, further efforts should be spent on standardization of the methodologies so that biomonitoring can widely be applied and the international comparability of data secured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ESBIO, European Human Biomonitoring. http://www.eu-humanbiomonitoring.org/

  2. Gnamuš A, Byrne AR, Horvat M (2000) Mercury in the soil-plant-deer-predator food chain of a temperate forest in Slovenia. Environ Sci Technol 34:3337–3345

    Article  Google Scholar 

  3. Grönlund R, Edner H, Svanberg S, Kotnik J, Horvat M (2005) Mercury emissions from the Idrija mercury mine measured by differential absorption lidar techniques and a point monitoring absorption spectrometer. Atmos Environ 39:4067–4074

    Article  Google Scholar 

  4. Hines ME, Faganeli J, Adatto I, Horvat M (2006) Microbial mercury transformations in marine, estuarine and freshwater sediment downstream of the Idrija Mercury Mine, Slovenija. Appl Geochem 21:1924–1939

    Article  CAS  Google Scholar 

  5. Hines ME, Horvat M, Faganeli J (2000) Mercury biogeochemistry in the Idrijca River, Slovenia from above the mine into the Gulf Trieste. Environ Res 83/A:129–139

    Article  Google Scholar 

  6. Horvat M, Covelli S, Faganeli J, Logar M, Fajon V, Rajar R, Širca A, Žagar D (1999) Mercury in contaminated coastal environments: a case study: the Gulf of Trieste. Sci Total Environ 237(238):43–56

    Article  PubMed  Google Scholar 

  7. Horvat M, Jeran Z, Špirić Z, Jaćimović R, Miklavčič V (2000) Mercury and other elements in lichens near the INA Naftaplin gas treatment plant, Molve, Croatia. J Environ Monit 2:139–144

    Article  PubMed  CAS  Google Scholar 

  8. Horvat M, Jereb V, Fajon V, Logar M, Kotnik J, Faganeli J, Hines ME, Bonzongo J-C (2002) Mercury distribution in water, sediment and soil in the Idrijca and Soča river systems. Geochem Explor Environ Anal 2:287–296

    Article  CAS  Google Scholar 

  9. Horvat M, Toman MJ, Stergaršek J, Kotnik J, Fajon V, Gibičar D (2004) Mercury and selenium in fish species in the Idrijca River polluted due to past mercury mining. RMZ Mater Geoenviron 51:1073–1077

    CAS  Google Scholar 

  10. Jeran Z, Jaćimović R, Batič F, Mavsar R (2002) Lichens as integrating air pollution monitors. Environ Pollut 120:107–113

    Article  PubMed  CAS  Google Scholar 

  11. Kljaković-Gašpić Z, Odžak N, Ujević I, Zvonarić T, Horvat M, Barić A (2006) Biomonitoring of mercury in polluted coastal area using transplanted mussels. Sci Total Environ 368:199–209

    Article  PubMed  Google Scholar 

  12. Kocman D (2008) Mass balance of mercury in the Idrijca River catchment. Doctoral dissertation, International postgraduate School Jožef stefam, Ljubljana

    Google Scholar 

  13. Kocman D, Horvat M, Kotnik J (2004) Mercury fractionation in contaminated soils from the Idrija mercury mine region. J Environ Monit 6:696–703

    Article  PubMed  CAS  Google Scholar 

  14. Kotnik J, Horvat M, Dizdarevič T (2005) Current and past mercury distribution in air over the Idrija Hg mine region, Slovenia. Atmos Environ 39:7570–7579

    Article  CAS  Google Scholar 

  15. Lapanje A, Drobne D, Nolde N, Valant J, Muscet B, Leser V, Rupnik M (2008) Long-term Hg pollution induced Hg tolerance in the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). Environ Pollut 153:537–547

    Article  PubMed  CAS  Google Scholar 

  16. Nolde N, Drobne D, Horvat M, Jereb V (2005) Reduction and methylation of mercury in the terrestrial isopod Porcellio scaber (Crustacea) and its environment. Environ Toxicol Chem 24:1697–1704

    Article  PubMed  CAS  Google Scholar 

  17. Nolde N, Drobne D, Valant J, Padovan I, Horvat M (2006) Lysosomal membrane stability in laboratory and field-exposed terrestrial isopods Porcellio scaber (Isopoda, Crustacea). Environ Toxicol Chem 25(8):2114–2122

    Article  PubMed  CAS  Google Scholar 

  18. Pirc S, Budkovič T (1996) Remains of World War I geochemical pollution in the landscape. In: Richardson M (ed) Environmental xenobiotics. Taylor & Francis, Hertfordshire, pp 375–418

    Google Scholar 

  19. Sericano Jl (2000) The Mussel Watch approach and its applicability to global chemical contamination monitoring programmes. Int J Environ Pollut 13:340–350

    Article  CAS  Google Scholar 

  20. Žagar D, Knap A, Warwick JJ, Rajar R, Horvat M, Četina M (2006) Modeling of mercury transport and transformation processes in the Idrijca and Soča river system. Sci Total Environ 368:149–163

    Article  PubMed  Google Scholar 

  21. Žižek S, Horvat M, Gibičar D, Fajon V, Toman MJ (2007) Bioaccumulation of mercury in benthic communities of a river ecosystem affected by mercury mining. Sci Total Environ 377:407–415

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Horvat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Horvat, M. (2011). Environmental Biomonitoring as a Tool in Risk and Impact Assessment Associated with Post-Conflict Restoration and Rehabilitation. In: Machlis, G., Hanson, T., Špirić, Z., McKendry, J. (eds) Warfare Ecology. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1214-0_13

Download citation

Publish with us

Policies and ethics