Skip to main content

Pulsed Electric Fields to Obtain Safe and Healthy Shelf-Stable Liquid Foods

  • Conference paper
  • First Online:
Advances in Food Protection

Abstract

Pulsed electric fields (PEF) technology provides the potential of ensuring safety and maintaining the physico-chemical quality of liquid food products without substantially impacting the content and composition of thermolabile compounds. This is especially relevant in the case of plant-based foods, because some of the features that are currently most appreciated by consumers, such as aroma or bioactive potential, are related to this heat-sensible fraction. Specifically, fruit juices and vegetable-based beverages exhibit a remarkable content in phytochemicals with health-promoting benefits, some of them with a significant antioxidant potential. Although the effectiveness of PEF treatments has been extensively studied during the past couple of decades, their impact on the bioactive composition of foods is still being researched. Through the presentation, some of the key factors that rule the inactivation/destruction of health-related constituents in foods will be introduced and discussed. Recently published research results will be reviewed and compared with those obtained for other thermal and non-thermal processing technologies, with a special stress on the effect of PEF-processing variables on the bioactive composition of foods throughout their whole shelf-life. Furthermore, different examples will be presented to illustrate not only the potential but also the limitations of PEF technology when aiming at preserving the health-promoting features of plant-based foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Prochownick L, Spaeth F (1890) Über die keimtötende Wirkung des galvanischen Stroms. Dtsch Med Wochenschr 26:564–565

    Article  Google Scholar 

  2. Beattie JM, Lewis FC (1925) The electric current (apart from the heat generated). A bacteriological agent in the sterilization of milk and other fluids. J Hyg 24:123–137

    Article  CAS  Google Scholar 

  3. Fetterman JC (1928) The electrical conductivity method of processing milk. Agr Eng 9(4):107–108

    Google Scholar 

  4. Moses BD (1938) Electric pasteurization of milk. Agr Eng 19(12):525–526

    Google Scholar 

  5. Allen M, Soike K (1966) Sterilization by electrohydraulic treatment. Science 154:155–157

    Article  CAS  Google Scholar 

  6. Edebo L, Selin I (1968) The effect of the pressure shock wave and some electrical quantities in the microbicidal effect of transient electric arcs in aqueous systems. J Gen Microbiol 50:253–259

    CAS  Google Scholar 

  7. Gossling BS (1960) Artificial mutation of micro-organisms by electrical shock. United Kingdom, UK 845743

    Google Scholar 

  8. Doevenspeck H (1960) Verfahren und Vorrichtung zur Gewinnung der einzelnen Phasen aus dispersen Systemen. German Patent, DE 1,237,541

    Google Scholar 

  9. Doevenspeck H (1961) Influencing cells and cell walls by electrostatic impulses. Fleischwirtschaft 13(12):968–987

    Google Scholar 

  10. Sale AJ, Hamilton WA (1967) Effect of high electric fields on micro-organisms. I. Killing of bacteria and yeast. II. Mechanism of action of the lethal effect. BBA Gen Subj 148:781–800

    Article  Google Scholar 

  11. Zimmermann U, Pilwat G, Riemann F (1974) Dielectric breakdown in cell membranes. Biophys J 14:881–899

    Article  CAS  Google Scholar 

  12. Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    Article  CAS  Google Scholar 

  13. Tsong TY (1991) Electroporation of cell membranes. Biophys J 60:297–306

    Article  CAS  Google Scholar 

  14. Hülsheger H, Niemann EG (1980) Lethal effects of high voltage pulses on E. coli K12. Radiat Environ Biophys 18:281–288

    Article  Google Scholar 

  15. Hülsheger H, Potel J, Niemann EG (1983) Electric field effects on bacteria and yeast cells. Radiat Environ Biophys 22:149–162

    Article  Google Scholar 

  16. Grahl T (1994) Abtöten von Mikroorganismen mit Hilfe elektrischer Hochspannungsimpulse. TU Hamburg-Harburg, Hamburg

    Google Scholar 

  17. Dunn JE, Pearlman JS (1987) Methods and apparatus for extending the shelf life of fluid food products. US Patent 4,695,472, 22 Sept 1987

    Google Scholar 

  18. Mizuno A, Hori Y (1988) Destruction of living cells by pulsed high-voltage application. IEEE Trans Ind Appl 24(3):387–394

    Article  Google Scholar 

  19. Qin BL Zhang Q Barbosa-Cánovas GV, Swanson BG (1994) Pulsed electric field pasteurization with a coaxial treatment chamber. CIFST/ICSTA 37th annual conference, P103, May 1994, Vancouver

    Google Scholar 

  20. Yin Y, Zhang QH, Sudhir KS (1997) High voltage pulsed electric field treatment chambers for the preservation of liquid food products. US Patent 5,690,978, 25 Nov 1997

    Google Scholar 

  21. Bushnell AH, Dunn IE, Clark RW, Pearlman JS (1993) High pulsed voltage systems for extending the shelf-life of pumpable food products. US Patent 5,235,905, 17 Aug 1993

    Google Scholar 

  22. Zhang Q, Barbosa-Cánovas GV, Swanson BG (1995) Engineering aspects of pulsed electric field pasteurization. J Food Eng 25:261–281

    Article  Google Scholar 

  23. Martín O, Zhang Q, Castro AJ, Barbosa-Cdnovas GV, Swanson BC (1994) Pulse electric fields of high voltage to preserve foods. Microbiological and engineering aspects of the processing in Span. J Food Sci Technol 34:1–34

    Google Scholar 

  24. Palaniappan S, Richter ER, Sastry SK (1990) Effects of electricity on microorganisms: a review. J Food Process Preserv 14:393–414

    Article  Google Scholar 

  25. Ho SY, Mittal GS (1996) Electroporation of cell membranes: a review. Crit Rev Biotechnol 16(4):349–362

    Article  CAS  Google Scholar 

  26. Jeyamkondan S, Jayas DS, Holley RA (1999) Pulsed electric field processing of foods: a review. J Food Prot 62(9):1088–1096

    CAS  Google Scholar 

  27. Knorr D, Geulen M, Grahl T, Sitzmann W (1994) Food application of high electric field pulses. Trends Food Sci Technol 5:71–75

    Article  CAS  Google Scholar 

  28. Mertens B, Knorr D (1992) Developments of nonthermal processes for food preservation. Food Technol 46(5):124–133

    Google Scholar 

  29. Barbosa-Cánovas GV, Góngora-Nieto MM, Pothakamury UR, Swanson BG (1999) Preservation of foods with pulsed electric fields. Academic, San Diego

    Google Scholar 

  30. Grahl T, Märkl H (1996) Killing of microorganisms by pulsed electric fields. Appl Microbiol Biotechnol 45:148–157

    Article  CAS  Google Scholar 

  31. Wouters PC, Smelt JPPM (1997) Inactivation of microorganisms with pulsed electric fields: potential for food preservation. Food Biotechnol 11:193–229

    Article  Google Scholar 

  32. Heinz V, Alvarez I, Angersbach A, Knorr D (2002) Preservation of liquid foods by high intensity pulsed electric fields-basic concepts for process design. Trends Food Sci Technol 12:103–111

    Article  Google Scholar 

  33. Peleg M (1995) A model of microbial survival after exposure to pulsed electric fields. J Sci Food Agric 67:93–99

    Article  CAS  Google Scholar 

  34. Aibara S, Esaki K (1998) Effects of high-voltage electric field treatment on bread starch. Biosci Biotechnol Biochem 62:2194–2198

    Article  CAS  Google Scholar 

  35. Ho SY, Mittal GS, Cross JD (1997) Effects of high field electric pulses on the activity of selected enzymes. J Food Eng 31:69–84

    CAS  Google Scholar 

  36. Aguiló-Aguayo I, Soliva-Fortuny R, Martín-Belloso O (2009) Changes on viscosity and pectolytic enzymes of tomato and strawberry juices processed by high-intensity pulsed electric fields. Int J Food Sci Technol 44:2268–2277

    Article  CAS  Google Scholar 

  37. Bendicho S, Barbosa-Cánovas GV, Martín O (2003) Reduction of protease activity in simulated milk ultrafiltrate by continuous flow high intensity pulsed electric field treatments. J Food Sci 68(3):952–957

    Article  CAS  Google Scholar 

  38. Hodgins AM, Mittal GS, Griffiths MW (2002) Pasteurization of fresh orange juice using low-energy pulsed electrical field. J Food Sci 67(6):2294–2299

    Article  CAS  Google Scholar 

  39. Odriozola-Serrano I, Bendicho-Porta S, Martín-Belloso O (2006) Comparative study on shelf life of whole milk processed by high-intensity pulsed electric field or heat treatment. J Dairy Sci 89:905–911

    Article  CAS  Google Scholar 

  40. Odriozola-Serrano I, Soliva-Fortuny R, Gimeno-Añó V, Martín-Belloso O (2008) Kinetic study of anthocyanins, vitamin C, and antioxidant capacity in strawberry juices treated by high-intensity pulsed electric fields. J Agric Food Chem 56:8387–8393

    Article  CAS  Google Scholar 

  41. Dörnenburg H, Knorr D (1998) Monitoring the impact of high pressure processing on the biosynthesis of plant metabolites using plant cell cultures. Trends Food Sci Technol 9:355–361

    Article  Google Scholar 

  42. Toepfl S, Heinz V, Knorr D (2005) Overview of pulsed electric field processing of foods. In: Sun D-W (ed) Emerging technologies for food processing. Elsevier, Oxford, pp 67–97

    Google Scholar 

  43. Dunn J (2001) Pulsed electric field processing: an overview. In: Barbosa-Canovas GV, Zhang QH (eds) Pulsed electric fields in food processing: fundamental aspects and applications. Technomic Publishing Company, Lancaster, pp 1–30

    Google Scholar 

  44. Morris C, Brody AL, Wicker L (2007) Non-thermal food processing/preservation technologies: a review with packaging implications. Packag Technol Sci 20(4):275–286

    Article  CAS  Google Scholar 

  45. IFT (2001) Effect of preservation technologies and microbiological inactivation in foods. In: IFI (ed) Evaluation and definition of potentially hazardous foods. comprehensive reviews in food science and food safety, vol 2. IFT, Chicago, pp 42–45

    Google Scholar 

  46. Braithwaite N, Weaver G (1990) Electronic materials. Butterworth Scientific Ltd, London.

    Google Scholar 

  47. Riley T, Watson A (1987) Polarography and other voltammetric methods. Wiley, NY

    Google Scholar 

  48. Fernandez-Díaz MD, Barsotti L, Dumacy E, Chefter JC (2000) Effects of pulsed electric fields on ovalbumin solutions and dialyzed egg white. J Agric Food Chem 48:2332–2339

    Article  CAS  Google Scholar 

  49. Zimmermann U (1986) Electric breakdown, electropermeabilization and electrofusion. Rev Physiol Biochem Pharmacol 105:175–256

    Article  Google Scholar 

  50. Elez-Martínez P, Escolà-Hernández J, Espachs-Barroso A, Barbosa-Cánovas GV, Martín-Belloso O (2005) Inactivation of Lactobacillus brevis in orange juice by high intensity pulsed electric fields. Food Microbiol 22(4):311–319

    Article  CAS  Google Scholar 

  51. Evrendilek GA, Li S, Dantzer WR, Zhang QH (2004) Pulsed electric field processing of beer: microbial, sensory, and quality analyses. J Food Sci 69:M228–M232

    Article  CAS  Google Scholar 

  52. Monfort S, Gayán E, Saldaña G, Puértolas E, Condón S, Raso J, Álvarez I (2010) Inactivation of Salmonella Typhimurium and Staphylococcus aureus by pulsed electric fields in liquid whole egg. Innovative Food Sci Emerg Technol 11:306–313

    Article  CAS  Google Scholar 

  53. Vega-Mercado H, Martín-Belloso O, Qin BL, Chang FJ, Góngora-Nieto MM, Barbosa-Cánovas GV, Swanson BG (1997) Non-thermal food preservation: pulsed electric fields. Trends Food Sci Technol 8(5):151–157

    Article  CAS  Google Scholar 

  54. Elez-Martínez P, Aguiló-Aguayo I, Martín-Belloso O (2006) Inactivation of orange juice peroxidase by high-intensity pulsed electric fields as influenced by processing parameters. J Sci Food Agric 86:71–81

    Article  CAS  Google Scholar 

  55. Min S, Evrendilek GA, Zhang QH (2007) Pulsed electric fields: processing system, microbial and enzyme inhibition, and shelf-life extension of foods. IEEE T Plasma Sci 35:59–73

    Article  CAS  Google Scholar 

  56. Alkhafaji SR, Farid M (2007) An investigation on pulsed electric fields technology using new treatment chamber design. Innovative Food Sci Emerg Technol 8:205–212

    Article  Google Scholar 

  57. Min S, Jin ZT, Min SK, Yeom H, Zhang QH (2003) Commercial-scale pulsed electric field processing of orange juice. J Food Sci 68:1265–1271

    Article  CAS  Google Scholar 

  58. Góngora-Nieto MM, Sepúlveda DR, Pedrow P, Barbosa-Cánovas GV, Swanson BG (2002) Food processing by pulsed electric fields: treatment delivery, inactivation level and regulatory aspects. LWT Food Sci Technol 35:375–388

    Google Scholar 

  59. Mosqueda-Melgar J, Elez-Martínez P, Raybaudi-Massilia RM, Martín-Belloso O (2008) Effects of pulsed electric fields on pathogenic microorganisms of major concern in fluid foods: a review. Crit Rev Food Sci Nutr 48:747–759

    Google Scholar 

  60. Elez-Martínez P, Soliva-Fortuny R, Martín-Belloso O (2006) Comparative study on shelf-life of orange juice processed by high intensity pulsed electric fields or heat treatment. Eur Food Res Technol 222:321–329

    Article  CAS  Google Scholar 

  61. Giner J, Gimeno V, Espachs A, Elez P, Barbosa-Cánovas GV, Martín O (2000) Inhibition of tomato (Licopersicon esculentum Mill.) pectin methylesterase by pulsed electric fields. Innovative Food Sci Emerg Technol 1:57–67

    Article  CAS  Google Scholar 

  62. Giner J, Gimeno V, Barbosa-Cánovas GV, Martín O (2001) Effects of pulsed electric fields processing on apple and pear polyphenoloxidases. Food Sci Technol Int 7:339–345

    CAS  Google Scholar 

  63. Zhong K, Wu J, Wang Z, Chen F, Liao X, Hu X et al (2007) Inactivation kinetics and secondary structural change of PEF-treated POD and PPO. Food Chem 100:115–123

    Article  CAS  Google Scholar 

  64. Qin B-L, Chang F-J, Barbosa-Cánovas GV, Swanson BG (1995) Nonthermal inactivation of Saccharomyces cerevisiae in apple juice using pulsed electric fields LWT–Food Sci Technol 28:564–568

    CAS  Google Scholar 

  65. Elez-Martínez P, Suárez-Recio M, Martín-Belloso O (2007) Modeling the reduction of pectin methyl esterase activity in orange juice by high intensity pulsed electric fields. J Food Eng 78(1):184–193

    Article  CAS  Google Scholar 

  66. Li YQ, Chen Q, Liu XH, Chen ZX (2008) Inactivation of soybean lipoxygenase in soymilk by pulsed electric fields. Food Chem 109:408–414

    Article  CAS  Google Scholar 

  67. Bazhal M, Ngadi MO, Raghavan VGS (2006) Kinetics of Escherichia coli in liquid whole egg using combined PEF and thermal treatments. LWT Food Sci Technol 39:420–426

    Article  CAS  Google Scholar 

  68. Elez-Martínez P, Escolà-Hernández J, Soliva-Fortuny RC, Martín-Belloso O (2004) Inactivation of Saccharomyces cerevisiae suspended in orange juice using high intensity pulsed electric fields. J Food Prot 67:2596–2602

    Google Scholar 

  69. El-Hag A, Otunola A, Jayaram SH, Anderson WA (2008) Reduction of microbial growth in milk by pulsed electric fields. 2008 IEEE international conference on dielectric liquids, Futuroscope-Chasseneuil, ICDL June 2008. Art. no. 4622478, pp 1–4

    Google Scholar 

  70. Evrendilek GA, Jin ZT, Ruhlman KT, Qiu X, Zhang QH, Ritcher ER (2000) Microbial safety and shelf-life of apple juice and cider processed by bench and pilot scale PEF systems. Innovative Food Sci Emerg Technol 1:77–86

    Article  Google Scholar 

  71. Morales-de la Peña M, Salvia-Trujillo L, Rojas-Graü MA, Martín-Belloso O (2010) Impact of high intensity pulsed electric field on antioxidant properties and quality parameters of a fruit juice-soymilk beverage in chilled storage. LWT Food Sci Technol 43:872–881

    Article  CAS  Google Scholar 

  72. Mosqueda-Melgar J, Raybaudi-Massilia RM, Martín-Belloso O (2007) Influence of treatment time and pulse frequency on Salmonella Enteriditis, Escherichia coli and Listeria monocytogenes populations inoculated in melon and watermelon juices treated by pulsed electric fields. Int J Food Microbiol 117:192–200

    Article  CAS  Google Scholar 

  73. Mosqueda-Melgar J, Raybaudi-Massilia RM, Martín-Belloso O (2008) Non-thermal pasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials. Innovative Food Sci Emerg Technol 9:328–340

    Article  CAS  Google Scholar 

  74. Mosqueda-Melgar J, Raybaudi-Massilia RM, Martín-Belloso O (2008) Inactivation of Salmonella enterica Ser. Enteritidis in tomato juice by combining of high-intensity pulsed electric fields with natural antimicrobials. J Food Sci 73:M47–M53

    Article  CAS  Google Scholar 

  75. Sobrino-López A, Raybaudi-Massilia R, Martín-Belloso O (2006) High-intensity pulsed-electric field variables affecting Staphylococcus aureus in milk. J Dairy Sci 89:3739–3748

    Article  Google Scholar 

  76. Yeom HW, Streaker CB, Zhang QH, Min DB (2000) Effects of pulsed electric fields on the quality of orange juice and comparison with heat pasteurization. J Agric Food Chem 48:4597–4605

    Article  CAS  Google Scholar 

  77. Iu J, Mittal GS, Griffiths MW (2001) Reductions in levels of Escherichia coli O157:H7 in apple cider by pulsed electric fields. J Food Prot 64:964–969

    CAS  Google Scholar 

  78. Liang Z, Mittal GS, Griffiths MW (2002) Inactivation of Salmonella Typhimurium in orange juice containing antimicrobial agents by pulsed electric field. J Food Prot 65:1081–1087

    CAS  Google Scholar 

  79. Martín-Belloso O, Elez-Martínez P (2005) Food safety aspects of pulsed electric fields. In: Sun D-W (ed) Emerging technologies for food processing. Elsevier, Oxford, pp 183–208

    Chapter  Google Scholar 

  80. Jayaram S, Castle GSP, Margatiris A (1992) Kinetics of sterilization of Lactobacillus brevis cells by the application of high voltage pulses. Biotechnol Bioeng 40:1412–1420

    Article  CAS  Google Scholar 

  81. Sensoy I, Zhang QH, Sastry SK (1997) Inactivation kinetics of Salmonella Dublin by pulsed electric field. J Food Process Eng 20(5):367–381

    Article  Google Scholar 

  82. Wouters PC, Alvarez I, Raso J (2001) Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends Food Sci Technol 12:112–121

    Article  CAS  Google Scholar 

  83. Aronsson K, Rönner U (2001) Influence of pH, water activity and temperature on the inactivation of Escherichia coli and Saccharomyces cerevisiae by pulsed electric fields. Innovative Food Sci Emerg Technol 2:105–112

    Article  CAS  Google Scholar 

  84. Min S, Laura R, Zhang QH (2002) Water activity and the inactivation of Enterobacter cloacae inoculated in chocolate liquor and a model system by pulsed electric field treatment. J Food Process Preserv 26:323–337

    Article  Google Scholar 

  85. Castro AJ, Barbosa-Cánovas GV, Swanson BG (1993) Microbial inactivation of foods by pulsed electric fields. J Food Process Preserv 17:47–73

    Article  Google Scholar 

  86. Dutreux N, Notermans S, Witjez T, Góngora-Nieto MM, Barbosa-Cánovas GV, Swanson BG (2000) Pulsed electric fields inactivation of attached and free-living Escherichia coli and Listeria innocua under several conditions. Int J Food Microbiol 54:91–98

    Article  CAS  Google Scholar 

  87. Mazurek B, Lubicki P, Staroniewicz Z (1995) Effect of short HV pulses on bacteria and fungi. IEEE T Dielect El In 2:418–425

    Article  Google Scholar 

  88. Pothakamury UR, Vega H, Zhang Q, Barbosa-Cánovas GV, Swanson BG (1996) Effect of growth stage and processing temperature on the inactivation of E. coli by pulsed electric fields. J Food Prot 59:1167–1171

    Google Scholar 

  89. Qin B-L, Barbosa-Canovas GV, Swanson BG, Pedrow PD, Olsen RG (1998) Inactivating microorganisms using a pulsed electric field continuous treatment system. IEEE Transactions on Industry Applications 34:43–50

    CAS  Google Scholar 

  90. Barbosa-Cánovas GV, Pothakamury UR, Palou E, Swanson BG (1998) Biological effects and applications of pulsed electric fields for the preservation of foods. In: Nonthermal preservation of foods, Marcel Dekker, New York, pp 73–112

    Google Scholar 

  91. Marquez VO, Mittal GS, Griffiths MW (1997) Destruction and inhibition of bacterial spores by high voltage pulsed electric field. J Food Sci 62:399–401

    Article  CAS  Google Scholar 

  92. Rodrigo D, Barbosa-Cánovas GV, Martínez A, Rodrigo M (2003) Pectin methyl esterase and natural microflora of fresh mixed orange juice and carrot juice treated with high intensity pulsed electric fields. J Food Prot 66:2336–2342

    CAS  Google Scholar 

  93. Zhang Q, Chang FJ, Barbosa-Cánovas GV, Swanson BG (1994) Inactivation of microorganisms in a semisolid model food using high voltage pulsed electric fields. LWT Food Sci Technol 27:538–543

    CAS  Google Scholar 

  94. McDonald CJ, Lloyd SW, Vitale MA, Perterson K, Inning F (2000) Effects of pulsed electric fields on microorganisms in orange juice using electric fields strengths of 30 and 50 kV/cm. J Food Sci 65:984–989

    Article  CAS  Google Scholar 

  95. Floury J, Grosset N, Lesne E, Jeantet R (2006) Continuous processing of skim milk by a combination of pulsed electric fields and conventional heat treatments: Does a synergetic effect on microbial inactivation exist? Lait 86:203–211

    CAS  Google Scholar 

  96. Walkling-Ribeiro M, Noci F, Cronin DA, Lyng JG, Morgan DJ (2009) Antimicrobial effect and shelf-life extension by combined thermal and pulsed electric field treatment of milk. J Appl Microbiol 106(1):241–248

    Article  CAS  Google Scholar 

  97. Sobrino-López A, Martín-Belloso O (2008) Enhancing the lethal effect of high-intensity pulsed electric field in milk by antimicrobial compounds as combined hurdles. J Dairy Sci 91:1759–1768

    Article  CAS  Google Scholar 

  98. Raybaudi-Massilia RM, Mosqueda-Melgar J, Martín-Belloso O (2006) Inactivation of E. coli O157:H7, S. Enteritidis and L. monocytogenes by combining of high-intensity pulsed electric fields and malic acid in apple juice. In: Workshop on Applications of novel technologies in food and biotechnology. Cork, Ireland, 11–13 Sept 2006. Book of abstracts p 32

    Google Scholar 

  99. Mosqueda-Melgar J, Raybaudi-Massilia RM, Martín-Belloso O (2008) Combination of high-intensity pulsed electric fields with natural antimicrobials to inactivate pathogenic microorganisms and extend the shelf-life of melon and watermelon juices. Food Microbiol 25:479–491

    Article  CAS  Google Scholar 

  100. Wouters PC, Dutreux N, Smelt JPPM, Lelieveld HLM (1999) Effects of pulsed electric fields on inactivation kinetics of Listeria innocua. Appl Environ Microbiol 65(12):5364–5371

    CAS  Google Scholar 

  101. Mastwijk HC Pol-Hofstad IE (2004) Pulsed electric field (PEF) processing in the fruit juice and dairy industries. Food Safety Magazine 10(3)

    Google Scholar 

  102. Noteborn HPJM, Lommen A, van der Jagt RC, Weseman JM (2001) Chemical fingerprinting for the evaluation of unintended secondary metabolic changes in transgenic food crops. Biotechnology 77:103–114

    Google Scholar 

  103. Lelieveld HLM, Wouters PC, Leon AE (2001) Pulsed electrical fields in food processing. Technomic Publishing Company, Lancaster

    Google Scholar 

  104. Council Directive EC (258/97), Novel food regulation, (1997)

    Google Scholar 

  105. Sánchez-Moreno C, Plaza L, Elez-Martínez P, De Ancos B, Martín-Belloso O, Cano MP (2005) Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. J Agric Food Chem 53:4403–4409

    Article  CAS  Google Scholar 

  106. Odriozola-Serrano I, Soliva-Fortuny R, Martín-Belloso O (2008) Changes of health-related compounds throughout cold storage of tomato juice stabilized by thermal or high intensity pulsed electric field treatments. Innovative Food Sci Emerg Technol 9:272–279

    Article  CAS  Google Scholar 

  107. Odriozola-Serrano I, Soliva-Fortuny R, Hernández-Jover T, Martín-Belloso O (2009) Carotenoid and phenolic profile of tomato juices processed by high intensity pulsed electric fields compared with conventional thermal treatments. Food Chem 112:258–266

    Article  CAS  Google Scholar 

  108. Odriozola-Serrano I, Soliva-Fortuny R, Martín-Belloso O (2008) Phenolic acids, flavonoids, vitamin C and antioxidant capacity of strawberry juices processed by high intensity pulsed electric fields or heat treatments. Eur Food Res Technol 228:239–248

    Article  CAS  Google Scholar 

  109. Sánchez-Moreno C, Cano MP, De Ancos B, Plaza L, Olmedilla B, Granado F, Elez-Martínez P, Martín-Belloso O, Martín A (2005) Intake of Mediterranean vegetable soup treated by pulsed electric fields affects plasma vitamin C and antioxidant biomarkers in humans. Int J Food Sci Nutr 56:115–124

    Article  CAS  Google Scholar 

  110. Min S, Jin ZT, Zhang QH (2003) Commercial scale pulsed electric field processing of tomato juice. J Agric Food Chem 51:3338–3344

    Article  CAS  Google Scholar 

  111. Torregrosa F, Esteve MJ, Frigola A, Cortés C (2006) Ascorbic acid stability during refrigerated storage of orange-carrot juice treated by high pulsed electric field and comparison with pasteurized juice. J Food Eng 73:339–345

    Article  CAS  Google Scholar 

  112. Bendicho S, Espachs A, Arántegui J, Martín O (2002) Effect of high intensity pulsed electric fields and heat treatments on vitamins of milk. J Dairy Res 69:113–123

    Article  CAS  Google Scholar 

  113. Cortés C, Torregrosa F, Esteve MJ, Frígola A (2006) Carotenoid profile modification during refrigerated storage in untreated and pasteurized orange juice and orange juice treated with high-intensity pulsed electric fields. J Agric Food Chem 54:6247–6254

    Article  CAS  Google Scholar 

  114. Quitão-Teixeira LJ, Odriozola-Serrano I, Soliva-Fortuny R, Mota-Ramos A, Martín-Belloso O (2009) Comparative study on antioxidant properties of carrot juice stabilised by high-intensity pulsed electric fields or heat treatments. J Sci Food Agric 89:2636–2642

    Article  CAS  Google Scholar 

  115. Oms-Oliu G, Odriozola-Serano I, Soliva-Fortuny R, Martín-Belloso O (2009) Effects of high-intensity pulsed electric field processing conditions on lycopene, vitamin C and antioxidant capacity of watermelon juice. Food Chem 115:1312–1319

    Article  CAS  Google Scholar 

  116. Torregrosa F, Cortés C, Esteve MJ, Frígola A (2005) Effects of high-intensity pulsed electric fields processing and conventional heat treatment on orange-carrot juice carotenoids. J Agric Food Chem 53:9519–9525

    Article  CAS  Google Scholar 

  117. Zulueta A, Barba FJ, Esteve MJ, Frígola A (2010) Effects on the carotenoid pattern and vitamin A of a pulsed electric field-treated orange juice-milk beverage and behavior during storage. Eur Food Res Technol 231(4):525–534

    Article  CAS  Google Scholar 

  118. Elez-Martínez P, Martín-Belloso O (2007) Effects of high intensity pulsed electric field processing conditions on vitamin C and antioxidant capacity of orange juice and gazpacho, a cold vegetable soup. Food Chem 102:201–209

    Article  CAS  Google Scholar 

  119. Martín-Belloso O, Vega-Mercado H, Qin BL, Chang FJ, Barbosa-Cánovas GV (1997) Swanson, B.G. Inactivation of Escherichia coli suspended in liquid egg using pulsed electric fields. J Food Process Preserv 21:193–208

    CAS  Google Scholar 

  120. Li S-Q, Bomser JA, Zhang QH (2005) Effects of pulsed electric fields and heat treatment on stability and secondary structure of bovine immunoglobulin G. J Agric Food Chem 53:663–670

    CAS  Google Scholar 

  121. Garde-Cerdán T, Arias-Gil M, Marsellés-Fontanet R, Ancín-Azpilicueta C, Martín-Belloso O (2007) Effects of thermal and non-thermal processing treatments on fatty acids and free amino acids of grape juice. Food Control 18:473–479

    Article  CAS  Google Scholar 

  122. Zulueta A, Esteve MJ, Frasquet I, Frígola A (2007) Fatty acid profile changes during orange juice-milk beverage processing by high-pulsed electric field. Eur J Lipid Sci Technol 109:25–31

    CAS  Google Scholar 

  123. Hoogland H, de Haan W (2007) Economic aspects of pulsed electric field treatment of food. In: Lelieveld HLM, Notermans S, de Haan SWH (eds) Food preservation by pulsed electric fields: from research to application. Woodhead publishing in Food Science, Technology and Nutrition, Cambridge, pp 257–265

    Google Scholar 

  124. Soliva-Fortuny R, Balasa A, Knorr D, Martín-Belloso O (2009) Effects of pulsed electric fields on bioactive compounds in foods: a review. Trends Food Sci Technol 20:544–556

    Article  CAS  Google Scholar 

  125. Li Y, Chen Z (2006) Effect of high intensity pulsed electric field on the functional properties of protein isolated from soybean. Trans Chin Soc Agric Eng 22(8):194–198

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Martín-Belloso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Aguiló-Aguayo, I., Soliva-Fortuny, R., Elez-Martínez, P., Martín-Belloso, O. (2011). Pulsed Electric Fields to Obtain Safe and Healthy Shelf-Stable Liquid Foods. In: Hefnawy, M. (eds) Advances in Food Protection. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1100-6_12

Download citation

Publish with us

Policies and ethics