Skip to main content

Transposable element dynamics in two sibling species: Drosophila melanogaster and Drosophila simulans

  • Chapter
Drosophila melanogaster, Drosophila simulans: So Similar, So Different

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 11))

  • 371 Accesses

Abstract

Transposable elements (TEs) in the two sibling species, Drosophila melanogaster and D. simulans, differ considerably in amount and dynamics, with D. simulans having a smaller amount of TEs than D. melanogaster. Several hypotheses have been proposed to explain these differences, based on the evolutionary history of the two species, and claim differences either in the effective size of the population or in genome characteristics. Recent data suggest, however, that the higher amount of TEs in D. melanogaster could be associated with the worldwide invasion of D. melanogaster a long time ago while D. simulans is still under the process of such geographical spread. Stresses due to new environmental conditions and crosses between migrating populations could explain the mobilization of TEs while the flies colonize. Colonization and TE mobilization may be strong evolutionary forces that have shaped and are still shaping the eukaryote genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References.

  • Biémont, C, 1992. Populations genetics of transposable DNA elements. Genetica 86: 67–84. Biémont, C. & G. Cizeron, 1999. Distribution of transposable elements in Drosophila species. Genetica 105: 43-62. Biémont, C, C. Vieira, N. Borie & D. Lepetit, 1999. Transposable elements and genome evolution: the case of Drosophila simulans. Genetica 107: 113-120. Biémont, C, C. Nardon, G. Deceliere, D. Lepetit, C. Loevenbruck & C. Vieira, 2003. Worldwide distribution of transposable elements copy number in natural populations of Drosophila simulans. Evolution (in press). Blackman, R.K., R. Grimaila, M.M. Koehler & W.M. Gelbart, 1987. Mobilization of hobo elements residing within the decapentaplegic gene complex: suggestion of a new hybrid dysgenesis system in Drosophila melanogaster. Cell 49: 497-505. Bonnivard, E., C. Bazin, B. Denis & D. Higuet, 2000. A scenario for the hobo transposable element invasion, deduced from the structure of natural populations of Drosophila melanogaster using tandem TPE repeats. Genet. Res. 75: 13-23. Borie, N., C. Lcevenbruck & C. Biemont, 2000. Developmental expression of the 412 retrotransposon in natural populations of D. melanogaster and D. simulans. Genet. Res. 76: 217-226. Borie, N., C. Maisonhaute, S. Sarrazin, C. Lcevenbruck & C. Biémont, 2002. Tissue-specificity of 412 retrotransposon expression in Drosophila simulans and D. melanogaster. Heredity 89: 247-252. Brégliano, J.C., G. Picard, A. Bucheton, A. Pelisson, J.M. Lavige & P. L’Héritier, 1980. Hybrid dysgenesis in Drosophila melanogaster. Science 207: 606-611. Brookfleld, J.F.Y., E.A. Montgomery & C.H. Langley, 1984. Apparent absence of transposable elements related to the P elements of D. melanogaster in other species of Drosophila. Nature 310: 330-332.

    Article  PubMed  Google Scholar 

  • Bucheton, A., 1990. I transposable elements and I-R hybrid dysgenesis in Drosophila. Trends Genet. 6: 16–21. Caggese, C, S. Pimpinelli, P. Barsanti & R. Caizzi, 1995. The distribution of the transposable element bari-1 in the Drosophila melanogaster and Drosophila simulans genomes. Genetica 96: 269-283. Capy, P., E. Pia & J.R. David, 1993. Phenotypic and genetic variability of morphometrical traits in natural populations of Drosophila melanogaster and D. simulans. I. Geographical variations. Genet. Seiet. Evol. 25: 517-536. Cohet, Y., J. Vouidibio & J.R. David, 1980. Thermal tolerance and geographic distribution: a comparison of cosmopolitan and tropical endemic Drosophila species. J. Therm. Biol. 5: 69-74. Costas, J., E. Valade & H. Naveira, 2001. Amplification and phylogenetic relationships of a subfamily of blood, a retrotransposable element of Drosophila. J. Mol. Evol. 52: 342-350. Csink, A.K. & J.F. McDonald, 1995. Analysis of copia sequence variation within and between Drosophila species. Mol. Biol. Evol. 12: 83-93. Dominguez, A. & J. Albornoz, 1996. Rates of movement of transposable elements in Drosophila melanogaster. Mol. Gen. Genet. 251: 130-138. Dowsett, A.P. & M.W. Young, 1982. Differing levels of dispersed repetitive DNA among closely related species of Drosophila. Proc. Natl. Acad. Sci. USA 79: 4570-4574. Evgen’ev, M., H. Zelentsova, L. Mnjoian, H. Poluectova & M.G. Kidwell, 2000. Invasion of Drosophila virilis by the Penelope transposable element. Chromosoma 109: 350-357.

    Article  PubMed  CAS  Google Scholar 

  • Finnegan, DJ., 1992. Transposable elements. Curr. Opin. Genet. Dev. 2: 861–867. Gregory, T.R., 2000. Nucleotypic effects without nuclei: genome size and erythrocyte size in mammals. Genome 43: 895-901. Hey, J. & R.M. Kliman, 1993. Population genetics and phylogenetics of DNA sequence variation at multiple loci within the Drosophila melanogaster species complex. Mol. Biol. Evol. 10: 804-822. Hyytia, P., P. Capy, J.R. David & R.S. Singh, 1985. Enzymatic and quantitative variation in European and African populations of Drosophila simulans. Heredity 54: 209-217. International Human Genome Sequencing Consortium, 2001. Initial sequencing and analysis of the human genome. Nature 409: 860-921. Junakovic, N., A. Terrinoni, C. Di Franco, C. Vieira & C. Lcevenbruck, 1998. Accumulation of transposable elements in the heterochromatin and on the Y chromosome of Drosophila simulans and Drosophila melanogaster. J. Mol. Evol. 46: 661-668. Kalendar, R., J. Tanskanen, S. Immonen, E. Nevo & A.H. Schulman, 2000. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl. Acad. Sci. USA 97: 6603-6607. Kidwell, M.G., 1977. Reciprocal differences in female recombination associated with hybrid dysgenesis in Drosophila melanogaster. Genet. Res. 30: 77-88. Kimura, K. & M.G. Kidwell, 1994. Differences in P element population dynamics between the sibling species Drosophila melanogaster and Drosophila simulans. Genet. Res. 63: 27-38. Labrador, M. & A. Fontdevila, 1994. High transposition rate of Osvaldo, a new Drosophila buzzatti retrotransposon. Mol. Gen. Genet. 245: 661-674. Labrador, M., M. Farre, F. Utzet & A. Fontdevilla, 1999. Interspecific hybridization increase tranposition rates of Osvaldo. Mol. Biol. Evol. 16: 931-937. Lachaise, D., M.L. Cariou, J.R. David, F. Lemeunier, L. Tsacas & M. Ashburner, 1988. Historical biogeography of the Drosophila melanogaster species subgroup. Evol. Mol. Biol. 22: 159-225. Leibovitch, B.A., I.V. Glushkova, E.G. Pasyukova, E.S. Belyaeva & V.A. Gvozdev, 1992. Comparative analysis of retrotransposon localization and mobility in sibling species Drosophila simulans and Drosophila melanogaster. Genetika 28: 85-97. Lemeunier, F. & S. Aulard, 1992. Inversion polymorphism in D. melanogaster, pp. 340-397 in Drosophila Inversion Polymorphism, edited by C.B. Krimbas & J.R. Powell. CRC Press, Boca Raton, FL. Lerat, E., P. Capy & C. Biétnont, 2002. The relative abundance of dinucleotides in transposable elements in five species. Mol. Biol. Evol. 54: 625-637.

    Article  PubMed  CAS  Google Scholar 

  • Martienssen, R., 1998. Transposons, DNA methylation and gene control. Trends Genet. 14: 263–264. Martin-Campos, J.M., J.P. Comeron, N. Miyashita & M. Aguade, 1992. Intraspecific and interspecific variation at the y-ac-sc region of Drosophila simulans and Drosophila melanogaster. Genetics 130: 805-816. Matyunina, L.V., I.K. Jordan & J.F. McDonald, 1996. Naturally occurring variation in copia expression is due to both element (cis) and host (trans) regulatory variation. Proc. Natl. Acad. Sci. USA 96: 7097-7102.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B., 1950. The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sei. USA 36: 344–355. McDonald, J.F., L.V. Matyunina, S. Wilson, I.K. Jordan, N.J. Bowen & W.J. Miller, 1997. LTR retrotransposon and the evolution of eukaryotic enhancers. Genetica 100: 3-13. Mirsky, A.E. & H. Ris, 1951. The deoxyribonucleic acid content of animal cells and its evolutionary significance. J. Genet. Physiol. 34:451 162. Nuzdhin, S.V., 1995. The distribution of transposable elements on X chromosomes from a natural population of D. simulans. Genet. Res. 66: 159-166. Nuzdhin, S.V. & T.F.C. MacKay, 1994. Direct determination of retrotransposon transposition rates in Drosophila melanogaster. Genet. Res. 63: 139-144. Nuzdhin, S.V. & T.F.C. MacKay, 1995. The genomic rate of transposable elements movement in Drosophila melanogaster. Mol. Biol. Evol. 12: 180-181. O’Neill, R.J.W., M.J. O’Neill & J.A.M. Graves, 1998. Undermethylation associated with retroelement activation and chromosome remodeling in an interspecific mammalian hybrid. Nature 393: 68-72. Pagel, M. & R.A. Johnston, 1992. Variation across species in the size of nuclear genome supports the junk DNA explanation for the C-value paradox. Proc. R. Soc. London B 249: 119-124. Pélisson, A., S.U. Song, N. Prud’homme, P.A. Smith, A. Bucheton & V.G. Corces, 1994. Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the Drosophila flamenco gene. EMBO J. 15: 4401-4411.

    Article  CAS  Google Scholar 

  • Petrov, D.A., 2001. Evolution of genome size: new approaches to an old problem. Trends Genet. 17: 23–28. Roy, A.M., M.L. Carroll, D.H. Kass, S.V. Nguyen, A.H. Salem, M.A. Batzer & PL. Deininger, 1999. Recently integrated human Alu repeats: finding needles in the haystack. Genetica 107: 149-161. SanMiguel, P. & J.L. Bennetzen, 1998. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot. 81: 37-44. SanMiguel, P., A. Tikhonov, Y.K. Jin, N. Motchoulskaia, D. Zakharov, A. Melake-Berhan, P.S. Springer, K.J. Edwards, M. Lee, Z. Avramova & J.L. Bennetzen, 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765-768. Stamatis, N., M. Monastirioti, G. Yannopoulos & C. Louis, 1989. The P-M and the 23.5 MRF (hobo) systems of hybrid dysgen-esis in Drosophila melanogaster are independent of each other. Genetics 123: 379-387. Suh, D.S., E.H. Choi, T. Yamazaki & K. Harada, 1995. Studies on the transposition rates of mobile genetic elements in a natural population of Drosophila melanogaster. Mol. Biol. Evol. 12: 748-758. Tarchini, R., P. Biddle, R. Wineland, S. Tingey & A. Rafalski, 2000. The complete sequence of 340 kb of DNA around the rice adhl-adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell 12: 381-391. Tcheressiz, S., V. Calco, F. Arnaud, L. Arthaud, B. Dastugue & C. Vaury, 2002. Expression of the Idefix retrotransposon in early follicle cells in the germarium of Drosophila melanogaster is determined by its LTR sequences and a specific genomic context. Mol. Genet. Genom. 267: 133-141. Vieira, C. & C. Biémont, 1996a. Geographical variation in insertion site number of retrotransposon 412 in Drosophila simulans. J. Mol. Evol. 42:443-451. Vieira, C. & C. Biémont, 1996b. Selection against transposable elements in D. simulans and D. melanogaster. Genet. Res. 68: 9-15. Vieira, C. & C. Biémont, 1997. Transposition rate of the 412 retrotransposable element is independent of copy number in natural populations of Drosophila simulans. Mol. Bio]. Evol. 14: 185-188. Vieira, C, P. Aubry, D. Lepetit & C. Biémont, 1998. A temperature cline in copy number for 412 but not roo/B104 retrotransposons in populations of D. simulans. Proc. R. Soc. London B 265: 1161-1165. Vieira, C, D. Lepetit, S. Dumont & C. Biémont, 1999. Wake up of transposable elements following Drosophila simulans worldwide colonization. Mol. Biol. Evol. 16: 1251-1255. Vieira, C, G. Piganeau & C. Biémont, 2000. Mobilization of various transposable elements in an Australian population of D. simulans. Genet. Res. 76: 117-119. Vieira, C, C. Nardon, C. Arpin, D. Lepetit & C. Biémont, 2002. Evolution of genome size in Drosophila. Is the invader’s genome being invaded by transposable elements? Mol. Biol. Evol. 19: 1154-1161. Voytas, D.F., M.P. Cummings, A. Koniczny, F.M. Ausubel & S.R. Rodermel, 1992. Copia-like retrotransposons are ubiquitous among plants. Proc. Natl. Acad. Sei. USA 89: 7124-7128. Watada, M., S. Ohba & Y.N. Tobari, 1986. Genetic differentiation in Japanese populations of Drosophila simulans and D. melanogaster. Jpn. J. Genet. 61: 469 4-80. Woodruff, R.C., J.R. Thompson Jr. & R.F. Lyman, 1979. Intraspecific hybridisation and the release of mutator activity. Nature 278: 277-229. Yannopoulos, G., N. Stamatis, M. Monastirioti, P. Hatzopoulos & C. Louis, 1987. Hobo is responsible for the induction of hybrid dysgenesis by strains of Drosophila melanogaster bearing the male recombination factor 23.5 MRF. Cell 49: 487 195. Yoder, J.A., C. Walsh & T.H. Bestor, 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13: 335-340. Young, M.W. & H.E. Schwartz, 1981. Nomadic gene families in Drosophila. Cold Spring Harbor Symp. Quant. Biol. 45: 629-640.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Capy P. Gibert I. Boussy

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vieira, C., Biémont, C. (2004). Transposable element dynamics in two sibling species: Drosophila melanogaster and Drosophila simulans . In: Capy, P., Gibert, P., Boussy, I. (eds) Drosophila melanogaster, Drosophila simulans: So Similar, So Different. Contemporary Issues in Genetics and Evolution, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0965-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0965-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3755-6

  • Online ISBN: 978-94-007-0965-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics