Skip to main content

State-of-the-Art Calculations of the 3d Transition-Metal Dimers: Mn2 and Sc2

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry II

Abstract

The problem of calculation of the electronic structure of transition-metal clusters (even dimers) still presents a challenge for computational chemistry. The reason is that the expansion of the ground state wave function on electronic configurations does not contain a principal configuration and a large number of reference configurations must be treated equally. Thus the multireference (MR) approaches are, in general, mandatory.

According to our studies of Mn2 by the MRCISD(+Q)/aug-cc-pVQZ and ACPF approaches, the ground state is the singlet, \( {\text{X}}{}^1\Sigma_{\text{g}}^{+} \), with the binding energy D e = 1.7 kcal/mol (0.07 eV) and R e = 3.6 Å. It was proved that the binding in the Mn2 dimer is of the van der Waals type. The calculation of Sc2 at the MRCISD(+Q)/cc-pV5Z level, showed that its ground state corresponds to a quintet, \( {}^5\Sigma_{\text{u}}^{-} \), in agreement with experiment and previous precise calculations. The triplet \( {}^3\Sigma_{\text{u}}^{-} \) state is located about 1.1 kcal/mol above. The ground state, \( {\text{X}}{}^5\Sigma_{\text{u}}^{-} \), of the Sc2 dimer was calculated by the MRCISD(+Q) method at the complete basis set (CBS) limit. This is the first MRCISD(+Q) calculation of 3d transition-metal clusters at the CBS limit. From the Mulliken population analysis and comparison with atomic energies follows that in the ground state Sc2 dissociates on one Sc in the ground state and the other in the second excited quartet state, 4Fu. The spectroscopic parameters of the ground potential curve, obtained by the Dunham analysis at the valence MRCISD(+Q)/CBS level, are: R e = 5.20 bohr, D e = 50.37 kcal/mol, and ω e = 234.5 cm−1. The obtained value for the harmonic frequency agrees very well with the experimental one, ω e = 239.9 cm−1. The Sc2 dimer is stabilized by the covalent bonding on the hybrid atomic orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morse MD (1986) Chem Rev 86:1049

    Article  CAS  Google Scholar 

  2. Lombardi JR, Davis B (2002) Chem Rev 102:2431

    Article  CAS  Google Scholar 

  3. Demangeat C, Parbelas JC (2002) Rep Prog Phys 65:1679

    Article  CAS  Google Scholar 

  4. Dagotto E (2003) The physics of manganites and related compounds, vol 136, Solid-state science. Springer, Berlin

    Google Scholar 

  5. Chu D, Kenning CG, Orbach R (1994) Phys Rev Lett 72:3270

    Article  CAS  Google Scholar 

  6. Baumann CA, Van Zee RJ, Bhat SV, Weltner W Jr (1983) J Chem Phys 78:190

    Article  CAS  Google Scholar 

  7. Cheeseman M, Van Zee RJ, Flanagan HL, Weltner W Jr (1990) J Chem Phys 92:1553

    Article  CAS  Google Scholar 

  8. Knickelbein MB (2004) Phys Rev B 70:014424

    Article  CAS  Google Scholar 

  9. Haslett TL, Moskovits M, Weitzman AL (1989) J Mol Spectrosc 135:259

    Article  CAS  Google Scholar 

  10. Terasaki A, Minemoto S, Kondow T (2002) J Chem Phys 117:7520

    Article  CAS  Google Scholar 

  11. Walch S, Bauschlicher CW Jr, Roos BO (1983) Chem Phys Lett 103:175

    Article  CAS  Google Scholar 

  12. Das GP, Jaffe RL (1984) Chem Phys Lett 109:206

    Article  CAS  Google Scholar 

  13. Bauschlicher CW Jr (1989) Chem Phys Lett 156:95

    Article  CAS  Google Scholar 

  14. Kaplan IG (2006) Intermolecular interactions: physical picture, computational methods and model potentials. Wiley, Chichester

    Book  Google Scholar 

  15. Das G, Wahl AC (1966) J Chem Phys 44:87

    Article  CAS  Google Scholar 

  16. Veirllad A, Clementi E (1967) Theor Chim Acta 7:133

    Article  Google Scholar 

  17. Werner H-J (1987) Adv Chem Phys 69:1

    Article  CAS  Google Scholar 

  18. Shepard R (1987) Adv Chem Phys 69:63

    Article  CAS  Google Scholar 

  19. Roos BO (1987) Adv Chem Phys 69:399

    Article  CAS  Google Scholar 

  20. Werner H-J, Knowles PJ (1985) J Chem Phys 82:5053

    Article  CAS  Google Scholar 

  21. Knowles PJ, Werner H-J (1985) Chem Phys Lett 115:259

    Article  CAS  Google Scholar 

  22. Langhoff SR, Davidson ER (1974) Int J Quantum Chem 8:61

    Article  CAS  Google Scholar 

  23. Davidson ER, Silver DW (1977) Chem Phys Lett 52:403

    Article  CAS  Google Scholar 

  24. Gdanitz RJ, Ahlrichs R (1988) Chem Phys Lett 143:413

    Article  CAS  Google Scholar 

  25. MOLPRO 2010.1, a package of ab initio programs written by Werner H-J, Knowles PJ, Lindh R, Manby FR, M. Schütz, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, M. Wang, A. Wolf

    Google Scholar 

  26. Werner H-J, Knowles PJ (1990) Theor Chim Acta 78:175

    Article  CAS  Google Scholar 

  27. Nesbet RK (1964) Phys Rev 135:A460

    Article  Google Scholar 

  28. Wang B, Chen Z (2004) Chem Phys Lett 387:395

    Article  CAS  Google Scholar 

  29. Yamamoto S, Tatewaki H, Moriyama H, Nakano H (2006) J Chem Phys 124:124302

    Article  CAS  Google Scholar 

  30. Negodaev I, de Graaf C, Caballol R (2008) Chem Phys Lett 458:290

    Article  CAS  Google Scholar 

  31. Buchachenko AA (2008) Chem Phys Lett 459:73

    Article  CAS  Google Scholar 

  32. Camacho C, Yamamoto S, Witek HA (2008) Phys Chem Chem Phys 10:5128

    Article  CAS  Google Scholar 

  33. Angeli C, Cavallini A, Cimiraglia R (2008) J Chem Phys 128:244317

    Article  CAS  Google Scholar 

  34. Mon MS, Mori H, Miyoshi E (2008) Chem Phys Lett 462:23

    Article  CAS  Google Scholar 

  35. Tzeli D, Miranda U, Kaplan IG, Mavridis A (2008) J Chem Phys 129:154310

    Article  CAS  Google Scholar 

  36. Buchachenko AA, Chałasiński G, Szczęśniak MM (2010) J Chem Phys 132:024312

    Article  CAS  Google Scholar 

  37. Nakano H (1993) J Chem Phys 99:7983

    Article  CAS  Google Scholar 

  38. Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu J-P (2001) J Chem Phys 114:10252

    Article  CAS  Google Scholar 

  39. Angeli C, Pastore M, Cimiraglia R (2007) Theor Chem Acc 117:743

    Article  CAS  Google Scholar 

  40. Osanai Y, Mon MS, Noro T, Mori H, Miyoshi E (2008) Chem Phys Lett 452:210

    Article  CAS  Google Scholar 

  41. Balabanov NB, Peterson KA (2005) J Chem Phys 123:064107

    Article  CAS  Google Scholar 

  42. https://bse.pnl.gov/bse/portal

  43. Harris J, Jones RO (1979) J Chem Phys 70:830

    Article  CAS  Google Scholar 

  44. Salahub DR, Baykara NA (1985) Surf Sci 156:605

    Article  CAS  Google Scholar 

  45. Fujima N, Yamaguchi T (1995) J Phys Soc Jpn 64:1251

    Article  CAS  Google Scholar 

  46. Nayak SK, Jena P (1998) Chem Phys Lett 289:473

    Article  CAS  Google Scholar 

  47. Nayak SK, Rao BK, Jena P (1998) J Phys Condens Mat 10:10863

    Article  CAS  Google Scholar 

  48. Pederson MK, Reuse FA, Khanna SN (1998) Phys Rev B 58:5632

    Article  CAS  Google Scholar 

  49. Desmarais N, Reuse FA, Khanna SN (2000) J Chem Phys 112:5576

    Article  CAS  Google Scholar 

  50. Yanagisawa S, Tsuneda T, Hirao K (2000) J Chem Phys 112:545

    Article  CAS  Google Scholar 

  51. Barden CJ, Rienstra-Kiracofe CC, Schaefer HF III (2000) J Chem Phys 113:690

    Article  CAS  Google Scholar 

  52. Gutsev GL, Bauschlicher CW Jr (2003) J Phys Chem A 107:4755

    Article  CAS  Google Scholar 

  53. Valiev M, Bylaska EJ, Weare JH (2003) J Chem Phys 119:5955

    Article  CAS  Google Scholar 

  54. Bobadova-Parvanova P, Jackson KA, Srinivas S, Horoi M (2005) J Chem Phys 122:014310

    Article  CAS  Google Scholar 

  55. Kabir M, Mookerjee A, Kanhere DJ (2006) Phys Rev B 73:224439

    Article  CAS  Google Scholar 

  56. Jellinek J, Acioli PH, García-Rodeja J, Zheng W, Thomas OC, Bowen KH Jr (2006) Phys Rev B 74:153401

    Article  CAS  Google Scholar 

  57. Jellinek J, Acioli PH (2003) J Chem Phys 118:7783

    Article  CAS  Google Scholar 

  58. Kaplan IG (2007) J Mol Struct 838:39

    Article  CAS  Google Scholar 

  59. Kaplan IG (2007) Int J Quantum Chem 107:2595

    Article  CAS  Google Scholar 

  60. Douglas M, Kroll NM (1974) Ann Phys (NY) 82:89

    Article  CAS  Google Scholar 

  61. Jansen G, Hess BA (1989) Phys Rev A 39:6016

    Article  Google Scholar 

  62. Jansen HB, Ros P (1969) Chem Phys Lett 3:140

    Article  CAS  Google Scholar 

  63. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  64. Liu B, Mclean AD (1973) J Chem Phys 59:4557

    Article  CAS  Google Scholar 

  65. Werner H-J, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2006) MOLPRO 2006.1, a package of ab initio programs

    Google Scholar 

  66. Kirkwood AK, Bier KD, Tompson JK, Haslett TL, Huber AS, Moskovits M (1991) J Phys Chem 95:2644

    Article  CAS  Google Scholar 

  67. Bier KD, Haslett TL, Kirkwood AK, Moskovits M (1988) J Chem Phys 89:6

    Article  CAS  Google Scholar 

  68. Kaplan IG (1975) Symmetry of many-electron systems. Academic, New York

    Google Scholar 

  69. Kaplan IG, Rodimova OB (1973) Int J Quantum Chem 7:1203

    Article  CAS  Google Scholar 

  70. Bunge CF, Barrientos JA, Bunge A (1993) Atomic Data Nucl Data Tables 53:113

    Article  CAS  Google Scholar 

  71. Löwdin P-O (1959) Adv Chem Phys 2:207

    Article  Google Scholar 

  72. Kaplan IG, Roszak S, Leszczynski J (2000) J Chem Phys 113:6245

    Article  CAS  Google Scholar 

  73. Pápai I, Castro M (1997) Chem Phys Lett 267:551

    Article  Google Scholar 

  74. Gutsev GL, Jena P, Rao BK, Khanna SN (2001) J Chem Phys 114:10738

    Article  CAS  Google Scholar 

  75. Furche F, Perdew JP (2006) J Chem Phys 124:044103

    Article  CAS  Google Scholar 

  76. Zhao Y, Truhlar DG (2006) J Chem Phys 124:224105

    Article  CAS  Google Scholar 

  77. Das G (1982) Chem Phys Lett 86:482

    Article  CAS  Google Scholar 

  78. Walch SP, Bauschlicher CW Jr (1983) Chem Phys Lett 94:290

    Article  CAS  Google Scholar 

  79. Walch SP, Bauschlicher CW Jr (1983) J Chem Phys 79:3590

    Article  CAS  Google Scholar 

  80. Jeung GH (1986) Chem Phys Lett 125:407

    Article  CAS  Google Scholar 

  81. Åkeby H, Peterson LGM, Siegbahn PEM (1992) J Chem Phys 97:1850

    Article  Google Scholar 

  82. Åkeby H, Peterson LGM (1993) J Mol Spectrosc 159:17

    Article  Google Scholar 

  83. Suzuki Y, Asai S, Kobayashi K, Noro T, Sasaki F, Tatewaki H (1997) Chem Phys Lett 268:213

    Article  CAS  Google Scholar 

  84. Matxain JL, Rezabal E, Lopez X, Ugalde JM, Gagliardi L (2008) J Chem Phys 128:194315

    Article  CAS  Google Scholar 

  85. Kalemos A, Kaplan IG, Mavridis A (2010) J Chem Phys 132:024309

    Article  CAS  Google Scholar 

  86. Camacho C, Cimiraglia R, Witek HA (2010) J Chem Phys 132:244306

    Article  CAS  Google Scholar 

  87. Kaplan IG, Miranda U (2011) AIP Advances 1:022108

    Article  CAS  Google Scholar 

  88. Miranda U, Kaplan IG (2011) Eur Phys J D. doi:DOI: 10.1140/epjd/e2010-10607-y

    Google Scholar 

  89. Knight LB, Van Zee JR, Weltner W (1983) Chem Phys Lett 94:296

    Article  CAS  Google Scholar 

  90. Moskovits M, Di Lella DP, Limm W (1984) J Chem Phys 80:626

    Article  CAS  Google Scholar 

  91. Knight LB, McKinley AJ, Babb RM, Hill DW, Morse MD (1993) J Chem Phys 99:7376

    Article  CAS  Google Scholar 

  92. Wang C-R, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H (2000) Nature 408:426

    Article  CAS  Google Scholar 

  93. Stevenson S, Fowler PW, Heine T, Duchamp JC, Rice G, Glass T, Harich K, Hajdu E, Bible R, Dorn HC (2000) Nature 408:427

    Article  CAS  Google Scholar 

  94. Shinohara H, Sato H, Ohkohchi M, Ando Y, Kodama T, Shida T, Kato T, Saito Y (1992) Nature 357:52

    Article  CAS  Google Scholar 

  95. Yannoni CS, Hoinkis M, de Vries MS, Bethune DS, Salem JR, Crowder MS, Johnson RD (1992) Science 256:1191

    Article  CAS  Google Scholar 

  96. Ralchenko Y, Kramida AE, Reader J, NIST ASD Team (2008) NIST atomic spectra database (version 3.1.5), Online. Available http://physics.nist.gov/asd3 (Aug 14 2009). National Institute of Standards and Technology, Gaithersburg

  97. Matxain JL, Rezabal E, Lopez X, Ugalde JM, Gagliardi L (2008) J Chem Phys 132:139901

    Article  CAS  Google Scholar 

  98. Camacho C, Cimiraglia R, Witek HA (2010) Phys Chem Chem Phys 12:5058

    Article  CAS  Google Scholar 

  99. Werner H-J, Knowles PJ (1988) J Chem Phys 89:5803

    Article  CAS  Google Scholar 

  100. Knowles PJ, Werner H-J (1988) Chem Phys Lett 145:514

    Article  CAS  Google Scholar 

  101. Werner H-J, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2009) MOLPRO 2009.1, a package of ab initio programs

    Google Scholar 

  102. Varandas AJC (2007) J Chem Phys 126:244105

    Article  CAS  Google Scholar 

  103. Brown FR, Truhlar DG (1985) Chem Phys Lett 117:307

    Article  CAS  Google Scholar 

  104. Hollister C, Sinanoĝlu O (1966) J Am Chem Soc 88:13

    Article  CAS  Google Scholar 

  105. Őksűz I, Sinanoĝlu O (1969) Phys Rev 181:42

    Article  Google Scholar 

  106. Sinanoĝlu O, Brueckner KA (1970) Three approaches to electron correlation in atoms, Chapter 5, Yale University Press, New Haven, CT

    Google Scholar 

  107. Becke AD (2003) J Chem Phys 119:2972

    Article  CAS  Google Scholar 

  108. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  109. Feller D (1992) J Chem Phys 96:6104

    Article  CAS  Google Scholar 

  110. Xantheas SS, Dunning TH Jr (1993) J Phys Chem 97:18

    Article  CAS  Google Scholar 

  111. Feller D, Sordo JA (2000) J Chem Phys 113:485

    Article  CAS  Google Scholar 

  112. Karton A, Martin JML (2006) Theor Chem Acc 115:330

    Article  CAS  Google Scholar 

  113. Jensen F (2005) Theor Chem Acc 113:267

    Article  CAS  Google Scholar 

  114. Dunham JL (1932) Phys Rev 41:721

    Article  CAS  Google Scholar 

  115. McWeeny R (1979) Coulson’s valence, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya G. Kaplan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kaplan, I.G., Miranda, U. (2012). State-of-the-Art Calculations of the 3d Transition-Metal Dimers: Mn2 and Sc2 . In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0923-2_10

Download citation

Publish with us

Policies and ethics