Skip to main content

Advancing Neuroprotective-Based Treatments for Schizophrenia

  • Chapter
  • First Online:
Handbook of Schizophrenia Spectrum Disorders, Volume III

Abstract

Schizophrenia is a chronic, severe, and disabling brain disease. About one-third of all patients with schizophrenia do not respond adequately to drug treatment. Advances in neuroscience and clinical research have led to the introduction of a novel generation of compounds with neuroprotective properties. Despite numerous animal studies with promising neuroprotective agents, no successful strategy for neuroprotection from functional psychoses has been successfully demonstrated. There are two main targets for neuroprotective therapy: (1) neurodegenerative processes in schizophrenia (e.g. apoptosis, excitotoxicity, oxidative stress, stress sensitization, and alteration of neurosteroids); and (2) phenotypic presentations of illness including psychopathological symptoms, significant decline in cognition, psychosocial functioning and in health related quality of life (HRQL). In this chapter substantial information about clinical trials with neurosteroids, vitamins, and some herbal supplements with neuroprotective properties in schizophrenia is presented. Neurosteroids such as pregnenolone (PREG), dehydroepiandrosterone (DHEA) and their sulfates (PREGS and DHEAS) are reported to have a modulatory effect on neuronal excitability and synaptic plasticity. In addition, vitamins and herbal supplements are important for regular cell function, growth and development. As a rule, vitamins promote the activity of enzymes to improve their efficiency and in this role they are called coenzymes. The herbal supplements are active antioxidants with neuroptective properties. The authors hope that neuroprotective strategies will pave the way to the next generation of antipsychotic, sedative and mood stabilizer medications. The clinical effects of neuroprotective agents clearly merit further clinical trials for the treatment of mental disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Arachidonic acid

AIMS:

Abnormal involuntary movement scale

BARS:

Barnes Akathisia rating scale

BDNF:

Brain-derived neurotrophic factor

CANTAB:

Cambridge automated neuropsychological test battery

CGI-S:

Clinical global impression severity scale

CNS:

Central nervous system

CSDS:

Calgary scale for depression in schizophrenia

DHA:

Docosahexaenoic acid

DHAs:

Docosahexaenoic acids

DHEA:

Dehydroepiandrosterone

DHEA(S):

Both DHEA and DHEAS

DHEAS:

Dehydroepiandrosterone sulfate

DNA:

Deoxyrybonucleic acid

DPA:

Docosapentaenoic acid

EGb:

Extract of gingko biloba

EPA:

Eicosapentaenoic acid

EPS:

Medication-induced extrapyramidal symptoms

EPUFAs:

Essential polyunsaturated fatty acids

ESRS:

Extrapyramidal symptom rating scale

FGAs:

First-generation antipsychotics

GABA:

Gamma-aminobutyric acid

GABAA :

Gamma-aminobutyric acid receptor type A

HAM-A:

Hamilton scale for anxiety

Hcy:

Homoysteine

HPA:

Hypothalamic-pituitary-adrenal axis

LDL:

Low-density lipoprotein

NMDA:

N-methyl-D-aspartate

PANSS:

Positive and negative symptom scale

PD:

Parkinson’s disease

PREG:

Pregnenolone

PREG(S):

Both PREG and PREGS

PREGS:

Pregnenolone sulfate

PUFA:

Polyunsaturated fatty acids

QLS:

Quality of life scale for rating the schizophrenic deficit syndrome

SAM:

S-adenosylmethionine

SANS:

Scale for the assessment of negative symptoms

SAPS:

Scale for the assessment of positive symptoms

SAS:

Simpson-Angus scale

SD:

Standard deviation

SGAs:

Second-generation antipsychotics

SOD:

Superoxide dismutase

TD:

Tardive dyskinesia

References

  1. Berger G, Dell’Olio M, Amminger P et al (2007) Neuroprotection in emerging psychotic disorders. Early Intervent Psychiatry 1:114–127

    Google Scholar 

  2. Ehrenreich H, Siren AL (2001) Neuroprotection–what does it mean?–What means do we have? Eur Arch Psychiatry Clin Neurosci 251:149–151

    PubMed  CAS  Google Scholar 

  3. Jarskog LF, Selinger ES, Lieberman JA, Gilmore JH (2004) Apoptotic proteins in the temporal cortex in schizophrenia: high Bax/Bcl-2 ratio without caspase-3 activation. Am J Psychiatry 161:109–115

    PubMed  Google Scholar 

  4. Krebs M, Leopold K, Hinzpeter A, Schaefer M (2006) Neuroprotective agents in schizophrenia and affective disorders. Expert Opin Pharmacother 7:837–848

    PubMed  CAS  Google Scholar 

  5. Susser E, Ritsner MS (2010) Brain protection in neuropsychiatric disorders: past, present and future challenges. In: Ritsner MS (ed) Brain protection in schizophrenia, mood and cognitive disorders. Springer, Dordrecht, pp 3–25

    Google Scholar 

  6. Ehrenreich H, Aust C, Krampe H et al (2004) Erythropoietin: novel approaches to neuroprotection in human brain disease. Metab Brain Disord 19:195–206

    CAS  Google Scholar 

  7. Ritsner MS (2010) Is a neuroprotective therapy suitable for schizophrenia patients? In: Ritsner MS (ed) Brain protection in schizophrenia, mood and cognitive disorders. Springer, Dordrecht, pp 343–395

    Google Scholar 

  8. Niizuma K, Endo H, Chan PH (2009) Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 109(Suppl 1):133–138

    PubMed  CAS  Google Scholar 

  9. Csernansky JG (2007) Neurodegeneration in schizophrenia: evidence from in vivo neuroimaging studies. Sci World J 7:135–143

    Google Scholar 

  10. Jarskog LF, Glantz LA, Gilmore JH, Lieberman JA (2005) Apoptotic mechanisms in the pathophysiology of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 29:846–858

    PubMed  CAS  Google Scholar 

  11. Jarskog LF (2006) Apoptosis in schizophrenia: pathophysiologic and therapeutic considerations. Curr Opin Psychiatry 19:307–312

    PubMed  Google Scholar 

  12. Cadet JL, Kahler LA (1994) Free radical mechanisms in schizophrenia and tardive dyskinesia. Neurosci Biobehav Rev 18:457–467

    PubMed  CAS  Google Scholar 

  13. Warner DS, Sheng H, Batinic-Haberle I (2004) Oxidants antioxidants and the ischemic brain. J Exp Biol 207:3221–3231

    PubMed  CAS  Google Scholar 

  14. Fendri C, Mechri A, Khiari G, Othman A, Kerkeni A, Gaha L (2006) Oxidative stress involvement in schizophrenia pathophysiology: a review. Encephale 32:244–252

    PubMed  CAS  Google Scholar 

  15. Mahadik SP, Scheffer RE (1996) Oxidative injury and potential use of antioxidants in schizophrenia. Prostaglandins Leukot Essent Fatty Acids 55:45–54

    PubMed  CAS  Google Scholar 

  16. Yao JK, Reddy R, McElhinny LG, van Kammen DP (1998) Reduced status of plasma total antioxidant capacity in schizophrenia. Schizophr Res 32:1–8

    PubMed  CAS  Google Scholar 

  17. Virit O, Altindag A, Yumru M et al (2009) A defect in the antioxidant defense system in schizophrenia. Neuropsychobiology 60:87–93

    PubMed  Google Scholar 

  18. Reddy R, Keshavan M, Yao JK (2003) Reduced plasma antioxidants in first-episode patients with schizophrenia. Schizophr Res 62:205–212

    PubMed  Google Scholar 

  19. Smythies JR (1997) Oxidative reactions and schizophrenia: a review-discussion. Schizophr Res 24:357–364

    PubMed  CAS  Google Scholar 

  20. Yao JK, Reddy R, van Kammen DP (1998) Reduced level of plasma antioxidant uric acid in schizophrenia. Psychiatry Res 80:29–39

    PubMed  CAS  Google Scholar 

  21. Yao JK, Reddy R, van Kammen DP (2000) Abnormal age-related changes of plasma antioxidant proteins in schizophrenia. Psychiatry Res 97:137–151

    PubMed  CAS  Google Scholar 

  22. Vardimon L (2000) Neuroprotection by glutamine synthetase. Isr Med Assoc J (Suppl 2):46–51

    Google Scholar 

  23. Deutsch SI, Rosse RB, Schwartz BL, Mastropaolo J (2001) A revised excitotoxic hypothesis of schizophrenia: therapeutic implications. Clin Neuropharmacol 24:43–49

    PubMed  CAS  Google Scholar 

  24. Baulieu EE, Robel P (1998) Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) as neuroactive neurosteroids. Proc Natl Acad Sci USA 95:4089–4091

    PubMed  CAS  Google Scholar 

  25. Charalampopoulos I, Tsatsanis C, Dermitzaki E et al (2004) Dehydroepiandrosterone and allopregnanolone protect sympathoadrenal medulla cells against apoptosis via antiapoptotic Bcl-2 proteins. Proc Natl Acad Sci USA 101:8209–8214

    PubMed  CAS  Google Scholar 

  26. Charalampopoulos I, Tsatsanis C, Margioris AN, Castanas E, Gravanis A (2008) Dehydroepiandrosterone as endogenous inhibitor of neuronal cell apoptosis: potential therapeutic implications in neurodegenerative diseases. In: Ritsner MS, Weizman A (eds) Neuroactive steroids in brain functions, and mental health. New perspectives for research and treatment. Springer, New York, NY, pp 217–225

    Google Scholar 

  27. Gursoy E, Cardounel A, Kalimi M (2001) Pregnenolone protects mouse hippocampal (HT-22) cells against glutamate and amyloid beta protein toxicity. Neurochem Res 26:15–21

    PubMed  CAS  Google Scholar 

  28. Maninger N, Wolkowitz OM, Reus VI, Epel ES, Mellon SH (2009) Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate DHEAS. Front Neuroendocrinol 30:65–91

    PubMed  CAS  Google Scholar 

  29. Naert G, Maurice T, Tapia-Arancibia L, Givalois L (2007) Neuroactive steroids modulate HPA axis activity and cerebral brain-derived neurotrophic factor (BDNF) protein levels in adult male rats. Psychoneuroendocrinology 32:1062–1078

    PubMed  CAS  Google Scholar 

  30. Ritsner MS, Gibel A, Ratner Y, Weizman A (2008) Dehydroepiandrosterone and pregnenolone alterations in schizophrenia. In: Ritsner MS, Weizman A (eds) Neuroactive steroids in brain function, behavior and neuropsychiatric disorders. Novel strategies for research and treatment. Springer, Bazel, pp 251–298

    Google Scholar 

  31. Takahashi Y, Lavigne JA, Hursting SD et al (2004) Using DNA microarray analyses to elucidate the effects of genistein in androgen-responsive prostate cancer cells: identification of novel targets. Mol Carcinog 41:108–119

    PubMed  CAS  Google Scholar 

  32. Akan P, Kizildag S, Ormen M, Genc S, Oktem MA, Fadiloglu M (2009) Pregnenolone protects the PC-12 cell line against amyloid beta peptide toxicity but its sulfate ester does not. Chem Biol Interact 177:65–70

    PubMed  CAS  Google Scholar 

  33. Bastianetto S, Ramassamy C, Poirier J, Quirion R (1999) Dehydroepiandrosterone (DHEA) protects hippocampal cells from oxidative stress-induced damage. Brain Res Mol Brain Res 66:35–41

    PubMed  CAS  Google Scholar 

  34. Cardounel A, Regelson W, Kalimi M (1999) Dehydroepiandrosterone protects hippocampal neurons against neurotoxin-induced cell death: mechanism of action. Proc Soc Exp Biol Med 222:145–149

    PubMed  CAS  Google Scholar 

  35. Karishma KK, Herbert J (2002) Dehydroepiandrosterone (DHEA) stimulates neurogenesis in the hippocampus of the rat, promotes survival of newly formed neurons and prevents corticosterone-induced suppression. Eur J Neurosci 16:445–453

    PubMed  CAS  Google Scholar 

  36. Kimonides VG, Khatibi NH, Svendsen CN, Sofroniew MV, Herbert J (1998) Dehydroepiandrosterone(DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. Proc Natl Acad Sci USA 95:1852–1857

    PubMed  CAS  Google Scholar 

  37. Kurata K, Takebayashi M, Morinobu S, Yamawaki S (2004) beta-estradiol, dehydroepiandrosterone, and dehydroepiandrosterone sulfate protect against N-methyl-D-aspartate-induced neurotoxicity in rat hippocampal neurons by different mechanisms. J Pharmacol Exp Ther 311:237–245

    PubMed  CAS  Google Scholar 

  38. Leskiewicz M, Jantas D, Budziszewska B, Lason W (2008) Excitatory neurosteroids attenuate apoptotic and excitotoxic cell death in primary cortical neurons. J Physiol Pharmacol 59:457–475

    PubMed  CAS  Google Scholar 

  39. Veiga S, Garcia-Segura LM, Azcoitia I (2003) Neuroprotection by the steroids pregnenolone and dehydroepiandrosterone is mediated by the enzyme aromatase. J Neurobiol 56:398–406

    PubMed  CAS  Google Scholar 

  40. Gallagher P, Ritsner MS (2009) Can the cortisol to DHEA molar ratio be used as a peripheral biomarker for schizophrenia and mood disorders? In: Ritsner MS (ed) The Handbook of neuropsychiatric biomarkers, endophenotypes and genes, vol 3, Springer, Dordrecht, pp 27–45

    Google Scholar 

  41. Ritsner M, Maayan R, Gibel A, Strous RD, Modai I, Weizman A (2004) Elevation of the cortisol/dehydroepiandrosterone ratio in schizophrenia patients. Eur Neuropsychopharmacol 14:267–273

    PubMed  CAS  Google Scholar 

  42. Ritsner MS (ed) (2008) Neuroactive steroids in brain functions, and mental health. New perspectives for research and treatment. Springer, New York, NY

    Google Scholar 

  43. Nachshoni T, Ebert T, Abramovitch Y et al (2005) Improvement of extrapyramidal symptoms following dehydroepiandrosterone (DHEA) administration in antipsychotic treated schizophrenia patients: a randomized, double-blind placebo controlled trial. Schizophr Res 79:251–256

    PubMed  Google Scholar 

  44. Ritsner MS, Gibel A, Ratner Y, Tsinovoy G, Strous RD (2006) Improvement of sustained attention and visual and movement skills, but not clinical symptoms, after dehydroepiandrosterone augmentation in schizophrenia: a randomized, double-blind, placebo-controlled, crossover trial. J Clin Psychopharmacol 26:495–499

    PubMed  CAS  Google Scholar 

  45. Ritsner MS, Strous RD (2009) Neurocognitive deficits in schizophrenia are associated with alterations in blood levels of neurosteroids: a multiple regression analysis of findings from a double-blind, randomized, placebo-controlled, crossover trial with DHEA. J Psychiatr Res 44:75–80

    PubMed  Google Scholar 

  46. Strous RD, Gibel A, Maayan R, Weizman A, Ritsner MS (2008) Hormonal response to dehydroepiandrosterone administration in schizophrenia: findings from a randomized, double-blind, placebo-controlled, crossover study. J Clin Psychopharmacol 28:456–459

    PubMed  Google Scholar 

  47. Strous RD, Maayan R, Lapidus R et al (2003) Dehydroepiandrosterone augmentation in the management of negative, depressive, and anxiety symptoms in schizophrenia. Arch Gen Psychiatry 60:133–141

    PubMed  CAS  Google Scholar 

  48. Strous RD, Stryjer R, Maayan R et al (2007) Analysis of clinical symptomatology, extrapyramidal symptoms and neurocognitive dysfunction following dehydroepiandrosterone (DHEA) administration in olanzapine treated schizophrenia patients: a randomized, double-blind placebo controlled trial. Psychoneuroendocrinology 32:96–105

    PubMed  CAS  Google Scholar 

  49. Nestler JE, Barlascini CO, Clore JN, Blackard WG (1988) Dehydroepiandrosterone reduces serum low density lipoprotein levels and body fat but does not alter insulin sensitivity in normal men. J Clin Endocrinol Metab 66:57–61

    PubMed  CAS  Google Scholar 

  50. Ritsner M, Gibel A, Ram E, Maayan R, Weizman A (2006) Alterations in DHEA metabolism in schizophrenia: two-month case-control study. Eur Neuropsychopharmacol 16:137–146

    PubMed  CAS  Google Scholar 

  51. Ritsner MS, Gibel A, Shleifer T et al (2010) Pregnenolone and dehydroepiandrosterone as an adjunctive treatment in schizophrenia: an 8-week, double-blind, randomized, controlled, two-center, parallel-group study. J Clin Psychiatry 71(10):1351–1362

    PubMed  CAS  Google Scholar 

  52. Marx CE, Keefe RS, Buchanan RW et al (2009) Proof-of-concept trial with the neurosteroid pregnenolone targeting cognitive and negative symptoms in schizophrenia. Neuropsychopharmacol 34:1885–1903

    CAS  Google Scholar 

  53. Zempleni J, Rucker RB, Suttie JW, McCormick DB (eds) (2007) Handbook of vitamins, 4th edn. CRC Press, New York, NY

    Google Scholar 

  54. Combs GF (2008) The vitamins: fundamental aspects in nutrition and health, 3rd edn. Elsevier Academic Press, Burlington

    Google Scholar 

  55. Sato Y, Meller R, Yang T, Taki W, Simon RP (2008) Stereo-selective neuroprotection against stroke with vitamin A derivatives. Brain Res 1241:188–192

    PubMed  CAS  Google Scholar 

  56. Malaspina A, Michael-Titus AT (2008) Is the modulation of retinoid and retinoid-associated signaling a future therapeutic strategy in neurological trauma and neurodegeneration? J Neurochem 104:584–595

    PubMed  CAS  Google Scholar 

  57. McCaffery P, Drager DC (1994) High level of a retinoic acid-generating dehydrogenase in the meso telencephalic dopamine system. Proc Natl Acad Sci USA 91:7772–7776

    PubMed  CAS  Google Scholar 

  58. Nau H, Chahoud I, Dencker L, Lammer RJ, Scott WI (1994) Teratogenicity of vitamin A and retinoids. In: Blomhoff R (ed) Vitamin A in health and disease. Dekker, New York, NY, pp 615–663

    Google Scholar 

  59. Satre MA, Ugen KE, Kochhar DM (1992) Developmental changes in endogenous retinoids during pregnancy and embryogenesis in the mouse. Biol Reprod 46:802–810

    PubMed  CAS  Google Scholar 

  60. Wagner E, Luo T, Drager UC (2002) Retinoic acid synthesis in the postnatal mouse brain marks distinct developmental stages and functional systems. Cereb Cortex 12:1244–1253

    PubMed  Google Scholar 

  61. Arinami T, Gao M, Hamaguchi H, Toru M (1997) A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum Mol Genet 6:577–582

    PubMed  CAS  Google Scholar 

  62. Balmer JE, Blomhoff R (2002) Gene expression regulation by retinoic acid. J Lipid Res 43:1773–1808

    PubMed  CAS  Google Scholar 

  63. Krezel W, Ghyselinck N, Samad TA et al (1998) Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science 279:863–867

    PubMed  CAS  Google Scholar 

  64. Samad TA, Krezel W, Chambon P, Borrelli E (1997) Regulation of dopaminergic pathways by retinoids: activation of the D2 receptor promoter by members of the retinoic acid receptor-retinoid X receptor family. Proc Natl Acad Sci USA 94:14349–14354

    PubMed  CAS  Google Scholar 

  65. Goodman AB (1998) Three independent lines of evidence suggest retinoids as causal to schizophrenia. Proc Natl Acad Sci USA 95:7240–7244

    PubMed  CAS  Google Scholar 

  66. Goodman AB (2005) Microarray results suggest altered transport and lowered synthesis of retinoic acid in schizophrenia. Mol Psychiatry 10:620–621

    PubMed  CAS  Google Scholar 

  67. Etchamendy N, Enderlin V, Marighetto A, Pallet V, Higueret P, Jaffard R (2003) Vitamin A deficiency and relational memory deficit in adult mice: relationships with changes in brain retinoid signalling. Behav Brain Res 145:37–49

    PubMed  CAS  Google Scholar 

  68. Misner DL, Jacobs S, Shimizu Y et al (2001) Vitamin deprivation results in reversible loss of hippocampal long-term synaptic plasticity. Proc Natl Acad Sci USA 98:11714–11719

    PubMed  CAS  Google Scholar 

  69. Alfos S, Boucheron C, Pallet V et al (2001) A retinoic acid receptor antagonist suppresses brain retinoic acid receptor overexpression and reverses a working memory deficit induced by chronic ethanol consumption in mice. Alcohol Clin Exp Res 25:1506–1514

    PubMed  CAS  Google Scholar 

  70. Corcoran JP, So PL, Maden M (2004) Disruption of the retinoid signalling pathway causes a deposition of amyloid beta in the adult rat brain. Eur J Neurosci 20:896–902

    PubMed  Google Scholar 

  71. Goodman AB, Pardee AB (2003) Evidence for defective retinoid transport and function in late onset Alzheimer’s disease. Proc Natl Acad Sci USA 100:2901–2905

    PubMed  CAS  Google Scholar 

  72. Lane MA, Bailey SJ (2005) Role of retinoid signalling in the adult brain. Prog Neurobiol 75:275–293

    PubMed  CAS  Google Scholar 

  73. Mey J, McCaffery P (2004) Retinoic acid signaling in the nervous system of adult vertebrates. Neuroscientist 10:409–421

    PubMed  CAS  Google Scholar 

  74. Lerner V, Miodownik C, Gibel A et al (2008) Bexarotene as add-on to antipsychotic treatment in schizophrenia patients: a pilot open-label trial. Clin Neuropharmacol 31:25–33

    PubMed  CAS  Google Scholar 

  75. Bucci L (1973) Pyridoxine and schizophrenia. Br J Psychiatry 122:240

    PubMed  CAS  Google Scholar 

  76. Brooks SC, D’Angelo L, Chalmeta A, Ahern G, Judson JH (1983) An unusual schizophrenic illness responsive to pyridoxine HCl (B6) subsequent to phenothiazine and butyrophenone toxicities. Biol Psychiatry 18:1321–1328

    PubMed  CAS  Google Scholar 

  77. Lerner V, Liberman M (1998) Movement disorders and psychotic symptoms treated with pyridoxine: a case report [letter]. J Clin Psychiatry 59:623–624

    PubMed  CAS  Google Scholar 

  78. Sandyk R, Pardeshi R (1990) Pyridoxine improves drug-induced parkinsonism and psychosis in a schizophrenic patient. Int J Neurosci 52(3–4):225–232

    PubMed  CAS  Google Scholar 

  79. Petrie WM, Ban TA, Ananth JV (1981) The use of nicotinic acid and pyridoxine in the treatment of schizophrenia. Int Pharmacopsychiatry 16:245–250

    PubMed  CAS  Google Scholar 

  80. Ananth JV, Ban TA, Lehmann HE (1973) Potentiation of therapeutic effects of nicotinic acid by pyridoxine in chronic schizophrenics. Can Psychiatr Assoc J 18:377–383

    PubMed  CAS  Google Scholar 

  81. Ban TA, Lehmann HE, Deutsch M (1977) Negative findings with megavitamins in schizophrenic patients: preliminary report. Commun Psychopharmacol 1:119–122

    PubMed  CAS  Google Scholar 

  82. Lerner V, Miodownik C, Kaptsan A, Cohen H, Loewenthal U, Kotler M (2002) Vitamin B6 as add-on treatment in chronic schizophrenic and schizoaffective patients: a double-blind, placebo-controlled study. J Clin Psychiatry 63:54–58

    PubMed  CAS  Google Scholar 

  83. Rebec GV, Centore JM, White LK, Alloway KD (1985) Ascorbic acid and the behavioral response to haloperidol: implications for the action of antipsychotic drugs. Science 227:438–440

    PubMed  CAS  Google Scholar 

  84. Singh RB, Ghosh S, Niaz MA et al (1995) Dietary intake, plasma levels of antioxidant vitamins, and oxidative stress in relation to coronary artery disease in elderly subjects. Am J Cardiol 76:1233–1238

    PubMed  CAS  Google Scholar 

  85. Suboticanec K (1986) Vitamin C status in schizophrenia. Bibl Nutr Dieta 173–181

    Google Scholar 

  86. Suboticanec K, Folnegovic-Smalc V, Korbar M, Mestrovic B, Buzina R (1990) Vitamin C status in chronic schizophrenia. Biol Psychiatry 28:959–966

    PubMed  CAS  Google Scholar 

  87. Milner G (1963) Ascorbic acid in chronic psychiatric patients: a controlled trial. Br J Psychiatry 109:294–299

    Google Scholar 

  88. Beauclair L, Vinogradov S, Riney SJ, Csernansky JG, Hollister LE (1987) An adjunctive role for ascorbic acid in the treatment of schizophrenia? J Clin Psychopharmacol 7:282–283

    PubMed  CAS  Google Scholar 

  89. Sandyk R, Kanofsky JD (1993) Vitamin C in the treatment of schizophrenia. Int J Neurosci 68:67–71

    PubMed  CAS  Google Scholar 

  90. Smythies JR (1996) The role of ascorbate in brain: therapeutic implications. J R Soc Med 89:241

    PubMed  CAS  Google Scholar 

  91. Dakhale GN, Khanzode SD, Khanzode SS, Saoji A (2005) Supplementation of vitamin C with atypical antipsychotics reduces oxidative stress and improves the outcome of schizophrenia. Psychopharmacology (Berl) 182:494–498

    CAS  Google Scholar 

  92. Arvindakshan M, Ghate M, Ranjekar PK, Evans DR, Mahadik SP (2003) Supplementation with a combination of omega-3 fatty acids and antioxidants (vitamins E and C) improves the outcome of schizophrenia. Schizophr Res 62:195–204

    PubMed  Google Scholar 

  93. McGrath J, Saari K, Hakko H et al (2004) Vitamin D supplementation during the first year of life and risk of schizophrenia: a Finnish birth cohort study. Schizophr Res 67:237–245

    PubMed  Google Scholar 

  94. Becker A, Eyles DW, McGrath JJ, Grecksch G (2005) Transient prenatal vitamin D deficiency is associated with subtle alterations in learning and memory functions in adult rats. Behav Brain Res 161:306–312

    PubMed  CAS  Google Scholar 

  95. Yan J, Feng J, Craddock N et al (2005) Vitamin D receptor variants in 192 patients with schizophrenia and other psychiatric diseases. Neurosci Lett 380:37–41

    PubMed  CAS  Google Scholar 

  96. McGrath J (1999) Hypothesis: is low prenatal vitamin D a risk-modifying factor for schizophrenia? Schizophr Res 40:173–177

    PubMed  CAS  Google Scholar 

  97. Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D (2002) New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab 13:100–105

    PubMed  CAS  Google Scholar 

  98. Kalueff AV, Eremin KO, Tuohimaa P (2004) Mechanisms of neuroprotective action of vitamin D(3). Biochemistry (Moscow) 69:738–741

    CAS  Google Scholar 

  99. Kiraly SJ, Kiraly MA, Hawe RD, Makhani N (2006) Vitamin D as a neuroactive substance: review. Sci World J 6:125–139

    CAS  Google Scholar 

  100. Llewellyn DJ, Langa K, Lang I (2009) Serum 25-Hydroxyvitamin D Concentration and Cognitive Impairment. J Geriatr Psychiatry Neurol 22(3):188–195

    PubMed  Google Scholar 

  101. Wilkins CH, Sheline YI, Roe CM, Birge SJ, Morris JC (2006) Vitamin D deficiency is associated with low mood and worse cognitive performance in older adults. Am J Geriatr Psychiatry 14:1032–1040

    PubMed  Google Scholar 

  102. Armstrong DJ, Meenagh GK, Bickle I, Lee AS, Curran ES, Finch MB (2007) Vitamin D deficiency is associated with anxiety and depression in fibromyalgia. Clin Rheumatol 26:551–554

    PubMed  CAS  Google Scholar 

  103. Berk M, Sanders KM, Pasco JA et al (2007) Vitamin D deficiency may play a role in depression. Med Hypotheses 69:1316–1319

    PubMed  CAS  Google Scholar 

  104. Grant WB (2009) Does vitamin D reduce the risk of dementia? J Alzheimers Dis 17:151–159

    PubMed  CAS  Google Scholar 

  105. Osakada F, Hashino A, Kume T, Katsuki H, Kaneko S, Akaike A (2004) Alpha-tocotrienol provides the most potent neuroprotection among vitamin E analogs on cultured striatal neurons. Neuropharmacology 47:904–915

    PubMed  CAS  Google Scholar 

  106. Osakada F, Hashino A, Kume T, Katsuki H, Kaneko S, Akaike A (2003) Neuroprotective effects of alpha-tocopherol on oxidative stress in rat striatal cultures. Eur J Pharmacol 465:15–22

    PubMed  CAS  Google Scholar 

  107. Roghani M, Behzadi G (2001) Neuroprotective effect of vitamin E on the early model of Parkinson’s disease in rat: behavioral and histochemical evidence. Brain Res 892:211–217

    PubMed  CAS  Google Scholar 

  108. Post A, Rucker M, Ohl F et al (2002) Mechanisms underlying the protective potential of alpha-tocopherol (vitamin E) against haloperidol-associated neurotoxicity. Neuropsychopharmacology 26:397–407

    PubMed  CAS  Google Scholar 

  109. D’Souza B, D’Souza V (2003) Oxidative injury and antioxidant vitamins E and C in schizophrenia. Ind J Clin Biochem 18:87–90

    Google Scholar 

  110. Bottiglieri T (1996) Folate vitamin B12, and neuropsychiatric disorders. Nutr Rev 54:382–390

    PubMed  CAS  Google Scholar 

  111. Bottiglieri T, Hyland K, Laundy M et al (1992) Folate deficiency, biopterin and monoamine metabolism in depression. Psychol Med 22:871–876

    PubMed  CAS  Google Scholar 

  112. Hutto BR (1997) Folate and cobalamin in psychiatric illness. Compr Psychiatry 38:305–314

    PubMed  CAS  Google Scholar 

  113. Anonymous (1998) Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomised trials. Homocysteine Lowering Trialists’ Collaboration. Br Med J 316:894–898

    Google Scholar 

  114. Brouwer IA, van Dusseldorp M, Duran M et al (1999) Low-dose folic acid supplementation does not influence plasma methionine concentrations in young non-pregnant women. Br J Nutr 82:85–89

    PubMed  CAS  Google Scholar 

  115. Stabler SP, Marcell PD, Podell ER, Allen RH, Savage DG, Lindenbaum J (1988) Elevation of total homocysteine in the serum of patients with cobalamin or folate deficiency detected by capillary gas chromatography-mass spectrometry. J Clin Invest 81:466–474

    PubMed  CAS  Google Scholar 

  116. Akaike A, Tamura Y, Sato Y, Yokota T (1993) Protective effects of a vitamin B12 analog, methylcobalamin, against glutamate cytotoxicity in cultured cortical neurons. Eur J Pharmacol 241:1–6

    PubMed  CAS  Google Scholar 

  117. Hector M, Burton JR (1988) What are the psychiatric manifestations of vitamin B12 deficiency? [see comments]. J Am Geriatr Soc 36:1105–1112

    PubMed  CAS  Google Scholar 

  118. Silver H (2000) Vitamin B12 levels are low in hospitalized psychiatric patients. Isr J Psychiatry Relat Sci 37:41–45

    PubMed  CAS  Google Scholar 

  119. de Carvalho MJ, Guilland JC, Moreau D, Boggio V, Fuchs F (1996) Vitamin status of healthy subjects in Burgundy (France). Ann Nutr Metab 40:24–51

    PubMed  Google Scholar 

  120. Garry PJ, Goodwin JS, Hunt WC (1984) Folate and vitamin B12 status in a healthy elderly population. J Am Geriatr Soc 32:719–726

    PubMed  CAS  Google Scholar 

  121. Grinblat J, Marcus DL, Hernandez F, Freedman ML (1986) Folate and vitamin B12 levels in an urban elderly population with chronic diseases. Assessment of two laboratory folate assays: microbiologic and radioassay. J Am Geriatr Soc 34:627–632

    PubMed  CAS  Google Scholar 

  122. Beck WS (1991) Neuropsychiatric consequences of cobalamin deficiency. Adv Intern Med 36:33–56

    PubMed  CAS  Google Scholar 

  123. Brett AS, Roberts MS (1994) Screening for vitamin B12 deficiency in psychiatric patients. J Gen Intern Med 9:522–524

    PubMed  CAS  Google Scholar 

  124. Buchman N, Mendelsson E, Lerner V, Kotler M (1999) Delirium associated with vitamin B12 deficiency after pneumonia. Clin Neuropharmacol 22:356–358

    PubMed  CAS  Google Scholar 

  125. Burvill PW, Jackson JM, Smith WG (1969) Psychiatric symptoms due to vitamin B12 deficiency without anaemia. Med J Aust 2:388–390

    PubMed  CAS  Google Scholar 

  126. Dommisse J (1991) Subtle vitamin-B12 deficiency and psychiatry: a largely unnoticed but devastating relationship? Med Hypotheses 34:131–140

    PubMed  CAS  Google Scholar 

  127. Hansen T, Rafaelson O, Rodbro P (1966) Vitamin B12 deficiency in psychiatry. Lancet 2:965

    Google Scholar 

  128. Levitt AJ, Joffe RT (1988) Vitamin B12 in psychotic depression. Br J Psychiatry 153:266–267

    PubMed  CAS  Google Scholar 

  129. Lindenbaum J, Healton EB, Savage DG et al (1988) Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. New Engl J Med 318:1720–1728

    PubMed  CAS  Google Scholar 

  130. Modell S, Naber D, Muller-Spahn F (1993) [Paranoid psychosis in a patient with hypothyroidism and vitamin B12 deficiency]. Nervenarzt 64:340–342

    PubMed  CAS  Google Scholar 

  131. Zucker DK, Livingston RL, Nakra R, Clayton PJ (1981) B12 deficiency and psychiatric disorders: case report and literature review. Biol Psychiatry 16:197–205

    PubMed  CAS  Google Scholar 

  132. Lerner V, Kanevsky M, Dwolatzky T, Rouach T, Kamin R, Miodownik C (2006) Vitamin B12 and folate serum levels in newly admitted psychiatric patients. Clin Nutr 25:60–67

    PubMed  CAS  Google Scholar 

  133. Regland B, Johansson BV, Gottfries CG (1994) Homocysteinemia and schizophrenia as a case of methylation deficiency. J Neural Transm Gen Sect 98:143–152

    PubMed  CAS  Google Scholar 

  134. Carney MW, Sheffield BF (1978) Serum folic acid and B12 in 272 psychiatric in-patients. Psychol Med 8:139–144

    PubMed  CAS  Google Scholar 

  135. Godfrey PS, Toone BK, Carney MW et al (1990) Enhancement of recovery from psychiatric illness by methylfolate. Lancet 336:392–395

    PubMed  CAS  Google Scholar 

  136. Levine J, Stahl Z, Sela BA et al (2006) Homocysteine-reducing strategies improve symptoms in chronic schizophrenic patients with hyperhomocysteinemia. Biol Psychiatry 60:265–269

    PubMed  CAS  Google Scholar 

  137. Freeman MP (2000) Omega-3 fatty acids in psychiatry: a review. Ann Clin Psychiatry 12:159–165

    PubMed  CAS  Google Scholar 

  138. Peet M (2008) Omega-3 polyunsaturated fatty acids in the treatment of schizophrenia. Isr J Psychiatry Relat Sci 45:19–25

    PubMed  Google Scholar 

  139. Mellor JE, Laugharne JD, Peet M (1996) Omega-3 fatty acid supplementation in schizophrenic patients. Human Psychopharmacol 11:39–46

    CAS  Google Scholar 

  140. Peet M, Brind J, Ramchand CN, Shah S, Vankar GK (2001) Two double-blind placebo-controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia. Schizophr Res 49:243–251

    PubMed  CAS  Google Scholar 

  141. Amminger GP, Schafer MR, Papageorgiou K et al (2010) Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Arch Gen Psychiatry 67:146–154

    PubMed  CAS  Google Scholar 

  142. Berger GE, Proffitt TM, McConchie M et al (2007) Ethyl-eicosapentaenoic acid in first-episode psychosis: a randomized, placebo-controlled trial. J Clin Psychiatry 68:1867–1875

    PubMed  CAS  Google Scholar 

  143. Emsley R, Myburgh C, Oosthuizen P, van Rensburg SJ (2002) Randomized, placebo-controlled study of ethyl-eicosapentaenoic acid as supplemental treatment in schizophrenia. Am J Psychiatry 159:1596–1598

    PubMed  Google Scholar 

  144. Peet M, Horrobin DF (2002) A dose-ranging exploratory study of the effects of ethyl-eicosapentaenoate in patients with persistent schizophrenic symptoms. J Psychiatr Res 36:7–18

    PubMed  Google Scholar 

  145. Emsley R, Niehaus DJ, Koen L et al (2006) The effects of eicosapentaenoic acid in tardive dyskinesia: a randomized, placebo-controlled trial. Schizophr Res 84:112–120

    PubMed  Google Scholar 

  146. Fenton WS, Dickerson F, Boronow J, Hibbeln JR, Knable M (2001) A placebo-controlled trial of omega-3 fatty acid (ethyl eicosapentaenoic acid) supplementation for residual symptoms and cognitive impairment in schizophrenia. Am J Psychiatry 158:2071–2074

    PubMed  CAS  Google Scholar 

  147. Bentsen H (2006) The Norwegian study on the treatment of schizophrenia and schizoaffective disorder with ethyl-EPA and antioxidants. The Second Conference on Brain Phospholipids. Aviemore, Scotland

    Google Scholar 

  148. McKenna DJ, Jones K, Hughes K (2001) Efficacy safety, and use of ginkgo biloba in clinical and preclinical applications. Altern Ther Health Med 7(70–86):88–90

    Google Scholar 

  149. Smith JV, Luo Y (2004) Studies on molecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biotechnol 64:465–472

    PubMed  CAS  Google Scholar 

  150. DeFeudis FV, Drieu K (2000) Ginkgo biloba extract (EGb 761) and CNS functions: basic studies and clinical applications. Curr Drug Targets 1:25–58

    PubMed  CAS  Google Scholar 

  151. Ramassamy C, Longpre F, Christen Y (2007) Ginkgo biloba extract (EGb 761) in Alzheimer’s disease: is there any evidence? Curr Alzheimer Res 4:253–262

    PubMed  CAS  Google Scholar 

  152. Zhou D, Zhang X, Su J et al (1999) The effects of classic antipsychotic haloperidol plus the extract of ginkgo biloba on superoxide dismutase in patients with chronic refractory schizophrenia. Chin Med J (Engl) 112:1093–1096

    CAS  Google Scholar 

  153. Atmaca M, Tezcan E, Kuloglu M, Ustundag B, Kirtas O (2005) The effect of extract of ginkgo biloba addition to olanzapine on therapeutic effect and antioxidant enzyme levels in patients with schizophrenia. Psychiatry Clin Neurosci 59:652–656

    PubMed  CAS  Google Scholar 

  154. Knable MB (2002) Extract of Ginkgo biloba added to haloperidol was effective for positive symptoms in refractory schizophrenia. Evid Based Ment Health 5:90

    PubMed  Google Scholar 

  155. Zhang XY, Zhou DF, Zhang PY, Wu GY, Su JM, Cao LY (2001) A double-blind, placebo-controlled trial of extract of Ginkgo biloba added to haloperidol in treatment-resistant patients with schizophrenia. J Clin Psychiatry 62:878–883

    PubMed  CAS  Google Scholar 

  156. Zhang XY, Zhou DF, Cao LY, Wu GY (2006) The effects of Ginkgo biloba extract added to haloperidol on peripheral T cell subsets in drug-free schizophrenia: a double-blind, placebo-controlled trial. Psychopharmacology (Berl) 188:12–17

    CAS  Google Scholar 

  157. Ekborg-Ott KH, Taylor A, Armstrong DW (1997) Varietal differences in the total and enantiomeric composition of theanine in tea. J Agric Food Chem 45:353–363

    CAS  Google Scholar 

  158. Bryan J (2008) Psychological effects of dietary components of tea: caffeine and L-theanine. Nutr Rev 66:82–90

    PubMed  Google Scholar 

  159. Nathan PJ, Lu K, Gray M, Oliver C (2006) The neuropharmacology of L-theanine(N-ethyl-L-glutamine): a possible neuroprotective and cognitive enhancing agent. J Herb Pharmacother 6:21–30

    PubMed  CAS  Google Scholar 

  160. Yamada T, Terashima T, Okubo T, Juneja LR, Yokogoshi H (2005) Effects of theanine, r-glutamylethylamide, on neurotransmitter release and its relationship with glutamic acid neurotransmission. Nutr Neurosci 8:219–226

    PubMed  CAS  Google Scholar 

  161. Egashira N, Hayakawa K, Osajima M et al (2007) Involvement of GABA(A) receptors in the neuroprotective effect of theanine on focal cerebral ischemia in mice. J Pharmacol Sci 105:211–214

    PubMed  CAS  Google Scholar 

  162. Kakuda T, Nozawa A, Sugimoto A, Niino H (2002) Inhibition by theanine of binding of [3H]AMPA, [3H]kainate, and [3H]MDL 105,519 to glutamate receptors. Biosci Biotechnol Biochem 66:2683–2686

    PubMed  CAS  Google Scholar 

  163. Yokozawa T, Dong E (1997) Influence of green tea and its three major components upon low-density lipoprotein oxidation. Exp Toxicol Pathol 49:329–335

    PubMed  CAS  Google Scholar 

  164. Yokogoshi H, Kobayashi M, Mochizuki M, Terashima T (1998) Effect of theanine, r-glutamylethylamide, on brain monoamines and striatal dopamine release in conscious rats. Neurochem Res 23:667–673

    PubMed  CAS  Google Scholar 

  165. Terashima T, Takido J, Yokogoshi H (1999) Time-dependent changes of amino acids in the serum, liver, brain and urine of rats administered with theanine. Biosci Biotechnol Biochem 63:615–618

    PubMed  CAS  Google Scholar 

  166. Tsuge H, Sano S, Hayakawa T, Kakuda T, Unno T (2003) Theanine gamma-glutamylethylamide, is metabolized by renal phosphate-independent glutaminase. Biochim Biophys Acta 1620:47–53

    PubMed  CAS  Google Scholar 

  167. Sadzuka Y, Sugiyama T, Nagamine M, Umegaki K, Sonobe T (2006) Efficacy of theanine is connected with theanine metabolism by any enzyme, not only drug metabolizing enzymes. Food Chem Toxicol 44:286–292

    PubMed  CAS  Google Scholar 

  168. Juneja LR, Chu DC, Okubo T, Nagato Y, Yokogoshi H (1999) L-theanine-a unique amino acid of green tea and its relaxation effect in humans. Trends Food Sci Technol 10:199–204

    CAS  Google Scholar 

  169. Lu K, Gray MA, Oliver C et al (2004) The acute effects of L-theanine in comparison with alprazolam on anticipatory anxiety in humans. Hum Psychopharmacol 19:457–465

    PubMed  CAS  Google Scholar 

  170. Kakuda T, Matsuura T, Sagesaka Y, Kawasaki T, Inventors (1996); Product and method for inhibiting caffeine stimulation with theanine. USA

    Google Scholar 

  171. Kakuda T, Nozawa A, Unno T, Okamura N, Okai O (2000) Inhibiting effects of theanine on caffeine stimulation evaluated by EEG in the rat. Biosci Biotechnol Biochem 64:287–293

    PubMed  CAS  Google Scholar 

  172. Kent JM, Mathew SJ, Gorman JM (2002) Molecular targets in the treatment of anxiety. Biol Psychiatry 52:1008–1030

    PubMed  CAS  Google Scholar 

  173. Ito K, Nagato Y, Aoi N et al (1998) Effects of L-theanine on the release of alpha-brain waves in human volunteers. Nippon Nogeikagaku Kaishi 72:153–157

    Google Scholar 

  174. Yokogoshi H, Mochizuki M, Saitoh K (1998) Theanine-induced reduction of brain serotonin concentration in rats. Biosci Biotechnol Biochem 62:816–817

    PubMed  CAS  Google Scholar 

  175. Kobayashi K, Nagato Y, Aoi N et al (1998) Effects of L-theanine on the release of α-brain waves in human volunteers. Nippon Nogeikagaku Kaishi 72:153–157

    CAS  Google Scholar 

Download references

Acknowledgments

We thank our collaborators Dr. Anatoly Gibel, Dr. Ekateryna Kovalyonok, Dr. Chanoch Miodownik, Dr. Yael Ratner, Dr. Tatyana Shleifer and Professor Abraham Weizman in the reviewed studies for fruitful cooperation. DHEA, L-theanine and vitamin B6 studies were supported by grants from the Stanley Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Ritsner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ritsner, M.S., Lerner, V. (2011). Advancing Neuroprotective-Based Treatments for Schizophrenia. In: Ritsner, M. (eds) Handbook of Schizophrenia Spectrum Disorders, Volume III. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0834-1_3

Download citation

Publish with us

Policies and ethics