Skip to main content

Brain Proteomics: Sample Preparation Techniques for the Analysis of Rat Brain Samples Using Mass Spectrometry

  • Chapter
  • First Online:
Sample Preparation in Biological Mass Spectrometry

Abstract

Rat brain proteomics is progressing gradually from gel-based approaches to gel-free systems and the emerging technique of MALDI imaging is making its mark on direct analysis of proteins in the brain sections. In this protocol chapter, we provide the details on the sample preparation methods for brain proteins analysis by mass spectrometry. Sample preparation methods include first grinding the brain and/or its regions in liquid nitrogen, followed by extracting proteins efficiently with various extraction buffers. The two protocols described here, are the modified TCA/acetone extraction method and extraction using Tris-buffered saline with addition of Tween 20. The soluble proteins obtained from the powdered brain samples can be directly analyzed after digestion with trypsin by gel-free approach to enhance the proteome coverage. Finally, we present a detailed protocol for protein identification in brain sections using the emerging technology of MALDI imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebersold, R., and Mann, M. (2003). Mass spectrometry-based proteomics. Nature 422, 198–207.

    Article  CAS  Google Scholar 

  • Agrawal, G.K., and Rakwal, R. (eds.) (2008). Plant Proteomics: Technologies, Strategies, and Applications (Hoboken, NJ, Wiley).

    Google Scholar 

  • Chaurand, P., et al. (2008). Imaging mass spectrometry of intact proteins from alcohol-preserved tissue specimens: Bypassing formalin fixation. J Proteome Res 7, 3543–3555.

    Article  CAS  Google Scholar 

  • Cox, J., and Mann, M. (2007). Is proteomics the new genomics? Cell 130, 395–398.

    Article  CAS  Google Scholar 

  • Dwinell, M.R., et al. (2009). The Rat Genome Database 2009: Variation, ontologies and pathways. Nucleic Acids Res 37, D744–D749.

    Article  CAS  Google Scholar 

  • Fountoulakis, M. (2004). Application of proteomics technologies in the investigation of the brain. Mass Spectrom Rev 23, 231–258.

    Article  CAS  Google Scholar 

  • Fountoulakis, M., and Kossida, S. (2006). Proteomics-driven progress in neurodegeneration research. Electrophoresis 27, 1556–1573.

    Article  CAS  Google Scholar 

  • Fountoulakis, M., Tsangaris, G.T., Maris, A., and Lubec, G. (2005). The rat brain hippocampus proteome. J Chrom B 819, 115–129.

    Article  CAS  Google Scholar 

  • Franck, J., Arafah, K., Barnes, A., Wisztorski, M., Salzet, M., and Fournier, I. (2009a). Improving tissue preparation for matrix-assisted laser desorption ionization mass spectrometry imaging. Part 1: using microspotting. Anal Chem 81, 8193–8202.

    Google Scholar 

  • Franck, J., Ayed, E., Wisztorski, M., Salzet, M., and Fournier, I. (2009b). On Tissue N-terminal peptide derivatizations for enhancing protein identification in MALDI-MSI strategies. Anal Chem 81, 8305–8317.

    Article  CAS  Google Scholar 

  • Garbis, S., Lubec, G., and Fountoulakis, M. (2005). Limitations of current proteomics technologies. J Chromatogr A 1077, 1–18.

    Article  CAS  Google Scholar 

  • Gibbs, R.A., et al. (2004). Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521.

    Article  CAS  Google Scholar 

  • Glowinski, J., and Iversen, L.L. (1966). Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem 13, 655–669.

    Article  CAS  Google Scholar 

  • Hirano, M., et al. (2006). New protein extraction/solubilization protocol for gel-based proteomics of rat (female) whole brain and brain regions for investigating central nervous system disorders. Mol Cells 22, 119–125.

    CAS  Google Scholar 

  • Hirano, M., et al. (2008). Proteomics- and transcriptomics-based screening of differentially expressed proteins and genes in brain of Wig rat: A model for attention deficit hyperactivity disorder (ADHD) research. J Proteome Res 7, 2471–2489.

    Article  CAS  Google Scholar 

  • Hirano, M., et al. (2007). Gel-based proteomics of unilateral irradiated striatum after gamma knife surgery. J Proteome Res 6, 2656–2668.

    Article  CAS  Google Scholar 

  • Kang, D., et al. (2005). Dual-purpose sample trap for on-line strong cation-exchange chromatography/reversed-phase liquid chromatography/tandem mass spectrometry for shotgun proteomics. Application to the human Jurkat T-cell proteome. J Chromatogr A 1070, 193–200.

    Article  CAS  Google Scholar 

  • Kim, S.-Y., et al. (2005). Proteomic analysis of phosphotyrosyl proteins in morphine-dependent rat brains. Mol Brain Res 133, 58–70.

    Article  CAS  Google Scholar 

  • Klose, J. (2009). From 2-D electrophoresis to proteomics. Electrophoresis 30, S142–S149.

    Article  Google Scholar 

  • Koller, A., Washburn, M.P., et al. (2002). Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci USA 99, 11969–11974

    Article  CAS  Google Scholar 

  • Lemaire, R., Tabet, J.C., Ducoroy, P., Hendra, J.B., Salzet, M., and Fournier, I. (2006a). Solid ionic matrixes for direct tissue analysis and MALDI imaging. Anal Chem 78, 809–819.

    Article  CAS  Google Scholar 

  • Lemaire, R., Wisztorski, M., Desmons, A., Tabet, J.C., Day, R., Salzet, M., and Fournier, I. (2006b). MALDI-MS direct tissue analysis of proteins: Improving signal sensitivity using organic treatments. Anal Chem 78, 7145–7153.

    Article  CAS  Google Scholar 

  • Masuo, Y., et al. (2009). Omic analyses unravels global molecular changes in the brain and liver of a rat model for chronic Sake (Japanese alcoholic beverage) intake. Electrophoresis 30, 1259–1275.

    Article  CAS  Google Scholar 

  • Mathy, G., and Sluse, F.E. (2008). Mitochondrial comparative proteomics: Strengths and pitfalls. Biochim Biophys Acta 1777, 1072–1077.

    Article  CAS  Google Scholar 

  • Mu, J., et al. (2008). Proteomic analysis of a rat model of depression. Expert Rev Proteomics 5, 315–320.

    Article  CAS  Google Scholar 

  • Paulson, L., et al. (2004). Comparative proteome analysis of thalamus in MK-801-treated rats. Proteomics 4, 819–825.

    Article  CAS  Google Scholar 

  • Sagvolden, T., et al. (2005). Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry 57, 1239–1247.

    Article  Google Scholar 

  • Schmidt, M.V., et al. (2008). Chronic stress and individual vulnerability. Ann N Y Acad Sci 1148, 174–183.

    Article  Google Scholar 

  • Seo, H.S., Hirano, M., Shibato, J., Rakwal, R., Hwang, I.K., and Masuo, Y. (2008). Effects of coffee bean aroma on the rat brain stressed by sleep deprivation: A selected transcript- and 2D gel-based proteome analyses. J Agric Food Chem 56, 4665–4673.

    Article  CAS  Google Scholar 

  • Steinberg, T.H., et al. (2003). Global quantitative phosphoprotein analysis using multiplexed proteomics technology. Proteomics 3, 1128–1144.

    Article  CAS  Google Scholar 

  • Tafet, G.E., and Bernardini, R. (2003). Psychoneuroendocrinological links between chronic stress and depression. Prog Neuropsychopharmacol Biol Psychiatry 27, 893–903.

    Article  Google Scholar 

  • Washburn, M.P., Wolters, D., and Yates J.R. 3rd (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19, 242–247.

    Article  CAS  Google Scholar 

  • Wilkins, M.R., Sanchez, J.C., Gooley, A.A., Appel, R.D., Humphery-Smith, I., et al. (1995). Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13, S19–S50.

    Google Scholar 

  • Williams, K., et al. (2004). Recent advances in neuroproteomics and potential application to studies of drug addiction. Neuropharmacology 47, 148–166.

    Article  CAS  Google Scholar 

  • Wisztorski, M., Croix, D., Macagno, E., Fournier, I., and Salzet, M. (2008). Molecular MALDI imaging: An emerging technology for neuroscience studies. Dev Neurobiol 68, 845–858.

    Article  CAS  Google Scholar 

  • Yeom, M., Shim, I., Lee, H.-J., and Hahm, D.-H. (2005). Proteomic analysis of nicotine-associated protein expression in the striatum of repeated nicotine-treated rats. Biochem Biophys Res Commun 326, 321–328.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randeep Rakwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Masuo, Y. et al. (2011). Brain Proteomics: Sample Preparation Techniques for the Analysis of Rat Brain Samples Using Mass Spectrometry. In: Ivanov, A., Lazarev, A. (eds) Sample Preparation in Biological Mass Spectrometry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0828-0_11

Download citation

Publish with us

Policies and ethics