Skip to main content

Optical Properties of Quantum Dot Nano-composite Materials Studied by Solid-State Theory Calculations

  • Reference work entry
  • First Online:
Handbook of Computational Chemistry
  • 4467 Accesses

Abstract

This chapter reviews the fundamental concepts of excitons and excitonic polaritons and their extraordinary optical properties in quantum dot nano-composite materials. By starting with the optical excitation of an exciton in the nanostructure we show that the effective dielectric constant of the nanostructure becomes significantly modified due to the exciton generation and recombination, resulting in high positive and negative dielectric constants. We also discuss single exciton generation by multiple photons and multiple exciton generation by single photon. All these nonlinear optical properties of quantum dot nano-composite materials offer novel possibilities and are expected to have deep impact in nanophotonics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams, E. (1954). Electron-electron scattering in Alkali metals. Physical Review, 95, 839–910.

    Article  CAS  Google Scholar 

  • Allan, G., & Delerue, C. (2008). Influence of electronic structure and multiexciton spectral density on multiple-exciton generation in semiconductor nanocrystals: Tight-binding calculations. Physical Review B, 77, 125340(10).

    Google Scholar 

  • Andreani, L. C., Gerace, D., & Agio, M. (2005). Exciton-polaritons and nanoscale cavities in photonic crystal slabs. Physica Status Solidi (B), 242, 2197–2209.

    Article  CAS  Google Scholar 

  • Birman, J. L., & Huong, N. Q. (2007). Wannier-Frenkel hybrid exciton in organic-semiconductor quantum dot heterostructures. Journal of Luminescence, 125, 196–200.

    Article  CAS  Google Scholar 

  • Bratkovsky, A., Ponizovskaya, E., Wang, S.-Y., Holmström, P., ThylĂ©n, L., Fu, Y., & Ă…gren, H. (2008). A metal-wire/quantum-dot composite metamaterial with negative \(\epsilon \) and compensated optical loss. Applied Physics Letters, 93, 193106(3).

    Google Scholar 

  • Cohen, R. W., Cody, G. D., Coutts, M. D., & Abeles, B. (1973). Optical properties of granular silver and gold films. Physical Review B, 8, 3689–3701.

    Article  CAS  Google Scholar 

  • Cohen-Tannoudji, C., Diu, B., & Laloe, F. (1991). Quantum mechanics (Vol. 2, p. 1046). New York: Wiley-Interscience.

    Google Scholar 

  • Derfus, A. M., Chen, A. A., Min, D.-H., Ruoslahti, E., & Bhatia, S. N. (2007). Targeted quantum dot conjugates for siRNA delivery. Bioconjugate Chemistry, 18, 1391–1396.

    Article  CAS  Google Scholar 

  • Dimmock, J. O. (1967). Chapter 7 Introduction to the theory of exciton states in semiconductors. In R. K. Willardson & A. C. Beer (Eds.), Semiconductors and Semimetals (Vol. 3, pp. 259–319). New York: Academic.

    Google Scholar 

  • Franceschetti, A., An, J. M., & Zunger, A. (2006). Impact ionization can explain carrier multiplication in PbSe quantum dots. Nano Letters, 6, 2191–2195.

    Article  CAS  Google Scholar 

  • Fu, Y., & Willander, M. (1999). Chapter 1 Elemental and compound semiconductors. In Physicalmodel of semiconductor quantum devices (pp. 1–22). Boston: Kluwer.

    Chapter  Google Scholar 

  • Fu, Y., Willander, M., Ivchenko, E. L., & Kiselev, A. A. (1997). Four-wave mixing in microcavities with embedded quantum wells. Physical Review, B55, 9872–9879.

    Article  Google Scholar 

  • Fu, Y., Willander, M., & Ivchenko, E. L. (2000). Photonic dispersions of semiconductor-quantum-dot-array-based photonic crystals in primitive and face-centered cubic lattices. Superlattices and Microstructures, 27, 255–264.

    Article  CAS  Google Scholar 

  • Fu, Y., Willander, M., & Xu, Q.-X. (2006a). Chapter 5 Quantum effects and nanofabrications in scaling metal-oxide-semiconductor devices. In A. A. Balandin & K. L. Wang (Eds.), Handbook of semiconductor nanostructures and nanodevices (Vol. 5, pp. 229–256). Los Angeles: American Scientific Publishers.

    Google Scholar 

  • Fu, Y., Berglind, E., ThylĂ©n, L., & Ă…gren, H. (2006b). Optical transmission and waveguiding by excitonic quantum dot lattices. Journal of the Optical Society of America B, 23, 2441–2447.

    Article  CAS  Google Scholar 

  • Fu, Y., Han, T.-T., Luo, Y., & Ă…gren, H. (2006c). Multi-photon excitation of quantum dots by ultra-short and ultra-intense laser pulse. Applied Physics Letters, 88, 221114(3).

    Google Scholar 

  • Fu, Y., Han, T.-T., Ă…gren, H., Lin, L., Chen, P., Liu, Y., Tang, G.-Q., Wu, J., Yue, Y., & Dai, N. (2007). Design of semiconductor CdSe-core ZnS/CdS-multishell quantum dots for multiphoton applications. Applied Physics Letters, 90, 173102(3).

    Google Scholar 

  • Fu, Y., ThylĂ©n, L., & Ă…gren, H. (2008). A lossless negative dielectric constant from quantum dot exciton polaritons. Nano Letters, 8, 1551–1555.

    Article  CAS  Google Scholar 

  • Fu, Y., Ă…gren, H., Kowalewski, J. M., Brismar, H., Wu, J., Yue, Y., Dai, N., & ThylĂ©n, L. (2009). Radiative and nonradiative recombination of photoexcited excitons in multi-shell-coated CdSe/CdS/ZnS quantum dots. Europhysics Letters, 86, 37003(6).

    Google Scholar 

  • Fu, Y., Zhou, Y.-H., Su, H., Boey, F. Y. C., & Ă…gren, H. (2010). Impact ionization and Auger recombination rates in semiconductor quantum dots. Journal of Physical Chemistry C, 114, 3743–3747.

    Article  CAS  Google Scholar 

  • Gasiorowicz, S. (1996). Quantum physics (p. 178). New York: Wiley.

    Google Scholar 

  • Gittleman, J. I., & Abeles, B. (1977). Comparison of the effective medium and the Maxwell-Garnett predictions for the dielectric constants of granular metals. Physical Review B, 15, 3273–3275.

    Article  CAS  Google Scholar 

  • Hanna, M. C., Ellingson, R. J., Beard, M., Yu, P., Micic, O.I., & Nozik, A.J. (2004, October 25–28). Quantum dot solar cells: High efficiency through multiple exciton generation. 2004 DOE Solar Energy Technologies Program Review Meeting, Denver, Colorado.

    Google Scholar 

  • Helmchen, F., Svododa, K., Denk, W., Kleinfeld, D., & Tank, D. W. (1996). In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nature Neuroscience, 2, 989–996.

    Article  Google Scholar 

  • Huxter, V. M., & Scholes, G. D. (2006). Nonlinear optical approach to multiexciton relaxation dynamics in quantum dots. Journal of Chemical Physics, 125, 144716–144712.

    Article  Google Scholar 

  • International Technology Roadmap for Semiconductors. www.itrs.net.

  • Ivchenko, E. L., Fu, Y., & Willander, M. (2000). Exciton polaritons in quantum-dot photonic crystals. Physics of the Solid State, 42, 1756–1765.

    Article  CAS  Google Scholar 

  • Jiang, J., Gao, B., Han, T.-T., & Fu, Y. (2009). Ab initio study of energy band structures of GaAs nanoclusters. Applied Physics Letters, 94, 092110(3).

    Google Scholar 

  • Kane, E. O. (1957). Band structure of indium antimonide. Journal of Physics and Chemistry of Solids, 1, 249.

    Article  Google Scholar 

  • Kavokin, A. (2007). Exciton-polaritons in microcavities: Present and future. Applied Physics A, 89, 241–246.

    Article  CAS  Google Scholar 

  • Kim, S. J., Kim, W. J., Sahoo, Y., Cartwright, A. N., & Prasad, P. N. (2008). Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor. Applied Physics Letters, 92, 31107(3).

    Google Scholar 

  • Lami, J.-F., Gilliot, P., & Hirlimann, C. (1996). Observation of interband two-photon absorption saturation in CdS. Physical Review Letters, 77, 1632–1635.

    Article  CAS  Google Scholar 

  • Landau, L. D., & Lifshitz, E. M. (1965). Quantum mechanics (2nd ed., p. 129). Oxford: Pergamon Press.

    Google Scholar 

  • Landsberg, P. T. (1991). Recombination in semiconductors. London: Cambridge University Press.

    Google Scholar 

  • Landsberg, P. T., & Adams, M. J. (1973). Theory of donor-acceptor radiative and Auger recombination in simple semiconductors. Proceedings of the Royal Society of London A, 334, 523–539.

    Article  CAS  Google Scholar 

  • Madelung, O. (Ed.). (1991). Semiconductors group IV elements and III-V compounds. Berlin: Springer.

    Google Scholar 

  • Madelung, O. (Ed.). (1992). Data in science and technology: Semiconductors other than group IV elements and III-V compounds. Boston: Springer.

    Google Scholar 

  • Maxwell-Garnett, J. C. (1906). Colours in metal glasses, in metallic films, and in metallic solutions. II. Philosophical Transactions of the Royal Society of London, 205, 237–288.

    Google Scholar 

  • Mayer, M. G. (1931). Elementary processes with two quantum jumps. Annalen Der Physik (Leipzig), 9, 273–294.

    Article  Google Scholar 

  • Medintz, I. L., Uyeda, H. T., Goldman, E. R., & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 4, 435–446.

    Article  CAS  Google Scholar 

  • Miller, D. A. B., Chemla, D. S., Eilenberg, D. J., Smith, P. W., Gossard, A. C., & Tsang, W. T. (1982). Large room-temperature optical nonlinearity in GaAs/Ga\({}_{1-x}\)Al\({}_{x}\)As multiple quantum well structures. Applied Physics Letters, 41, 679–681.

    Article  CAS  Google Scholar 

  • MolnĂ¡r, M., Fu, Y., Friberg, P., & Chen, Y. (2010). Optical characterization of colloidal CdSe quantum dots in endothelial progenitor cells. Journal of Nanobiotechnology, 8, 2. doi:10.1186/1477-3155-8-2.

    Article  Google Scholar 

  • Nozik, A. J. (2002). Quantum dot solar cells. Physica E: Low-dimensional Systems and Nanostructures, 14, 115–120.

    Article  CAS  Google Scholar 

  • Rabani, E., & Baer, R., (2008). Distribution of multiexciton generation rates in CdSe and InAs nanocrystals. Nano Letters, 8, 4488–4492.

    Article  CAS  Google Scholar 

  • Ridley, B. K. (1988). Quantum processes in semiconductors (pp. 269–278). Oxford: Clarendon Press.

    Google Scholar 

  • Rodina, P., Ebert, U., Hundsdorfer, W., & Grekhov, I. (2002). Tunneling-assisted impact ionization fronts in semiconductors. Journal of Applied Physics, 92, 958–964.

    Article  Google Scholar 

  • Schaller, R. D., & Klimov, V. I. (2004). High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Physical Review Letters, 92, 186601(4).

    Google Scholar 

  • Schaller, R. D., Agranovich, V. M., & Klimov, V. I. (2005). Mechanism for high-efficiency carrier multiplication in semiconductor nanocrystals: Direct photogeneration of multiexcitons via virtual single-exciton states. Nature Physics, 1, 189–194.

    Article  CAS  Google Scholar 

  • Schmidt, M. E., Blanton, S. A., Hines, M. A., & Guyot-Sionnest, P. (1996). Size-dependent two-photon excitation spectroscopy of CdSe nanocrystals. Physical Review B, 53, 12629–12632.

    Article  CAS  Google Scholar 

  • Scholes, G. D., & Rumbles, G. (2006). Excitons in nanoscale systems. Nature Materials, 5, 683–696.

    Article  CAS  Google Scholar 

  • Sturge, M. D., & Rashba, E. I. (Eds.). (1982). Excitons. Amsterdam: North-Holland.

    Google Scholar 

  • SuffczyÅ„ski, J., Kazimierczuk, T., Goryca, M., Piechal, B., Trajnerowicz, A., Kowalik, K., Kossacki, P., Golnik, A., Korona, K. P., Nawrocki, M., & Gaj, J. A. (2006). Excitation mechanisms of individual CdTe/ZnTe quantum dots studied by photon correlation spectroscopy. Physical Review B, 74, 085319(7).

    Google Scholar 

  • Sun, H. D., Makino, T., Segawa, Y., Kawasaki, M., Ohtomo, A., Tamura, K., & Koinuma, H. (2002). Enhancement of exciton binding energies in ZnO/ZnMgO multiquantum wells. Journal of Applied Physics, 91, 1993–1997.

    Article  CAS  Google Scholar 

  • Takenaka, N., Inoue, M., & Inuishi, Y. (1979). Influence of inter-carrier scattering on hot electron distribution function in GaAs. Journal of the Physical Society of Japan, 47, 861–868.

    Article  CAS  Google Scholar 

  • ThylĂ©n, L., He, S., Wosinski, L., & Dai, D. (2006). The Moore’s Law for photonic integrated circuits. Journal of Zhejiang University Science A, 7, 1961–1967.

    Article  Google Scholar 

  • Trinh, M. T., Houtepen, A. J., Schins, J. M., Hanrath, T., Piris, J., Knulst, W., Goossens, A. P. L. M., & Siebbeles, L. D. A. (2008). In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. Nano Letters, 8, 1713–1718.

    Article  Google Scholar 

  • Vashist, S. K., Tewari, R., Bajpai, R. P., Bharadwaj, L. M., & Raiteri, R. (2006). Review of quantum dot technologies for cancer detection and treatment. Azojono Journal of Nanotechnology Online, 2, 1–14, 10.2240/azojono0113.

    Google Scholar 

  • Vlasov, Y. A., Astratov, V. N., Karimov, O. Z., Kaplyanskii, A. A., Bogomolov, V. N & Prokofiev, A. V. (1997). Existence of a photonic pseudogap for visible light in synthetic opals. Physical Review, B55, R13357–13360.

    Article  Google Scholar 

  • Vurgaftman, I., Meyer, J. R., & Ram-Mohan, L. R. (2001). Band parameters for III-V compound semiconductors and their alloys. Journal Of Applied Physics, 89, 5815–5875.

    Article  CAS  Google Scholar 

  • Weisbuch, C., Benisty H., & HoudrĂ©, R. (2000). Overview of fundamentals and applications of electrons, excitons and photons in confined structures. Journal of Luminescence, 85, 271–293.

    Article  CAS  Google Scholar 

  • Wherrett, B. S. (1984). Scaling rules for multiphoton interband absorption in semiconductors. Journal of the Optical Society of America B-Optical Physics, 1, 67–72.

    Article  CAS  Google Scholar 

  • Xu, W.-L., Fu, Y., Willander, M., & Shen, S. C. (1994). Theory of normal incident absorption for the intersubband transition in n-type indirect-gap semiconductor quantum wells. Physical Review B, 49, 13760–13766.

    Article  CAS  Google Scholar 

  • Yannopapas, V. (2007). Artificial magnetism and negative refractive index in three-dimensional metamaterials of spherical particles at near-infrared and visible frequencies. Applied Physics A, 87, 259–264.

    Article  CAS  Google Scholar 

  • Yannopapas, V. (2008). Subwavelength imaging of light by arrays of metal-coated semiconductor nanoparticles: A theoretical study. Journal of Physics: Condensed Matter, 20, 255201–255208.

    Google Scholar 

  • Yatsui, T., Sangu, S., Kawazoe, T., Ohtsu, M., An, S. J., Yoo, J., & Yi, G.-C. (2007). Nanophotonic switch using ZnO nanorod double-quantum-well structures. Applied Physics Letters, 90, 223110(3).

    Google Scholar 

  • Yatsui, T., Yib, G.-C., & Ohtsu, M. (2008). Progress in developing nanophotonic integrated circuits. Proceedings of SPIE, 7007, 700703(8).

    Google Scholar 

  • Yokoyama, H., Guo, H., Yoda, T., Takashima, K., Sato, K.-I., Taniguchi, H., & Ito, H. (2006). Two-photon bioimaging with picosecond optical pulses from a semiconductor laser. Optics Express, 14, 3467–3471.

    Article  Google Scholar 

  • Zamfirescu, M., Kavokin, A., Gil., B, Malpuech, G., & Kaliteevski, M. (2002). ZnO as a material mostly adapted for the realization of room-temperature polariton lasers. Physical Review B, 65, 161205(4).

    Google Scholar 

  • Zeng, Y., Fu, Y., Chen, X., Lu, W., & Ă…gren, H. (2006a). Complete band gaps in three-dimensional quantum-dot photonic crystals. Physical Review B, 74, 115325(5).

    Google Scholar 

  • Zeng, Y., Chen, X.-S., Lu, W., Fu, Y. (2006b). Exciton polaritons of nano-spherical-particle photonic crystals in compound lattices. The European Physical Journal B, 49, 313–318.

    Article  CAS  Google Scholar 

  • Zia, R., Schuller, J. A., Chandran, A., & Brongersma, M. L. (2006). Plasmonics: The next chip-scale technology. Materials Today, 9, 20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Fu, Y., Ă…gren, H. (2012). Optical Properties of Quantum Dot Nano-composite Materials Studied by Solid-State Theory Calculations. In: Leszczynski, J. (eds) Handbook of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0711-5_23

Download citation

Publish with us

Policies and ethics