Skip to main content

The Plant Cytoskeleton Remodelling in Nematode Induced Feeding Sites

  • Chapter
  • First Online:

Abstract

Cytoskeleton remodelling is a crucial process in many aspects of plant cell growth and differentiation, including intracellular organization, division, expansion, motility and interactions with the environment. In the last years, it has become apparent that the cytoskeleton plays also a crucial role in plant–microbe interactions. However, not much is currently known about the proteins which regulate actin and microtubule array remodelling during interactions with plant pathogens. Sedentary endoparasitic nematodes interact with their hosts in a quite unique and intriguing way. They induce the redifferentiation of root cells into specialized multinucleate and hypertrophied feeding cells essential for nematode growth and reproduction. Major rearrangements of the cytoskeleton occur during feeding cell formation. The first plant candidate proteins involved in giant cell actin and microtubule cytoskeleton reorganization were recently revealed and two of them, MAP65-3 and ADF2, have been shown to be essential for nematode-induced giant cell ontogenesis in Arabidopsis. A better knowledge of the plant response during the compatible interaction should allow the identification of targets to engineer resistance to parasitic nematodes in crops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC, Caillaud MC, Coutinho PM, Dasilva C, De Luca F, Deau F, Esquibet M, Flutre T, Goldstone JV, Hamamouch N, Hewezi T, Jaillon O, Jubin C, Leonetti P, Magliano M, Maier TR, Markov GV, McVeigh P, Pesole G, Poulain J, Robinson-Rechavi M, Sallet E, Segurens B, Steinbach D, Tytgat T, Ugarte E, van Ghelder C, Veronico P, Baum TJ, Blaxter M, Bleve-Zacheo T, Davis EL, Ewbank JJ, Favery B, Grenier E, Henrissat B, Jones JT, Laudet V, Maule AG, Quesneville H, Rosso MN, Schiex T, Smant G, Weissenbach J, Wincker P (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26:909–915

    Article  PubMed  CAS  Google Scholar 

  • Andrianantoandro E, Pollard TD (2006) Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell 24:13–23

    Article  PubMed  CAS  Google Scholar 

  • Barcala M, Garcia A, Cabrera J, Casson S, Lindsey K, Favery B, Garcia-Casado G, Solano R, Fenoll C, Escobar C (2010) Early transcriptomic events in microdissected Arabidopsis nematode-induced giant  cells. Plant J 61:698–712

    Article  PubMed  CAS  Google Scholar 

  • Binarova P, Cenklova V, Hause B, Kubatova E, Lysak M, Dolezel J, Bogre L, Draber P (2000) Nuclear gamma-tubulin during acentriolar plant mitosis. Plant Cell 12:433–442

    PubMed  CAS  Google Scholar 

  • Bonfante P, Bergero R, Uribe X, Romera C, Rigau J, Puigdomenech P (1996) Transcriptional activation of a maize a tubulin gene in mycorrhizal maize and transgenic tobacco plants. Plant J 9:737–743

    Article  CAS  Google Scholar 

  • Boyko V, Ferralli J, Heinlein M (2000) Cell-to-cell movement of TMV RNA is temperature-dependent and corresponds to the association of movement protein with microtubules. Plant J 22:315–325

    Article  PubMed  CAS  Google Scholar 

  • Brueggeman R, Druka A, Nirmala J, Cavileer T, Drader T, Rostoks N, Mirlohi A, Bennypaul H, Gill U, Kudrna D, Whitelaw C, Kilian A, Han F, Sun Y, Gill K, Steffenson B, Kleinhofs A (2008) The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. Proc Natl Acad Sci U S A 105:14970–14975

    Article  PubMed  CAS  Google Scholar 

  • Caillaud MC (2009) Etude de l’organisation du cytosquelette dans les cellules géantes induites par le nématode à galles Meloidogyne incognita chez la plante modèle Arabidopsis thaliana. UMR IBSV INRA—UNSA—CNRS, Nice—Sophia Antipolis University

    Google Scholar 

  • Caillaud MC, Lecomte P, Jammes F, Quentin M, Pagnotta S, Andrio E, de Almeida Engler J, Marfaing N, Gounon P, Abad P, Favery B (2008a) MAP65-3 microtubule-associated protein is essential for nematode-induced giant cell ontogenesis in Arabidopsis. Plant Cell 20:423–437

    Article  CAS  Google Scholar 

  • Caillaud MC, Dubreuil G, Quentin M, Perfus-Barbeoch L, Lecomte P, de Almeida Engler J, Abad P, Rosso MN, Favery B (2008b) Root-knot nematodes manipulate plant cell functions during a compatible interaction. J Plant Physiol 165:104–113

    Article  CAS  Google Scholar 

  • Carlier MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136:1307–1322

    Article  PubMed  CAS  Google Scholar 

  • Carnero Diaz E, Martin F, Tagu D (1996) Eucalypta tubulin: cDNA cloning and increased level of transcripts in ectomycorrhizal root system. Plant Mol Biol 31:905–910

    Article  PubMed  CAS  Google Scholar 

  • Chan J, Jensen CG, Jensen LC, Bush M, Lloyd CW (1999) The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc Natl Acad Sci U S A 96:14931–14936

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Bernstein BW and Bamburg JR (2000) Regulating actin-filament dynamics in vivo. Trends Biochem Sci 25:19–23.

    Article  PubMed  CAS  Google Scholar 

  • Cheung AY, Wu H-M (2004) Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. Plant Cell 16:257–269

    Article  PubMed  CAS  Google Scholar 

  • Clement M, Ketelaar T, Rodiuc N, Banora MY, Smertenko A, Engler G, Abad P, Hussey PJ, de Almeida Engler J (2009) Actin-depolymerizing factor2-mediated actin dynamics are essential for root-knot nematode infection of Arabidopsis. Plant Cell 21:2963–79

    Article  PubMed  CAS  Google Scholar 

  • Cvrckova F (2000) Are plant formins integral membrane proteins? Genome Biol 1(1):research001

    Google Scholar 

  • de Almeida Engler J, De Vleesschauwer V, Burssens S, Celenza JL, Inze D, Van Montagu M, Engler G, Gheysen G (1999) Molecular markers and cell cycle inhibitors show the importance of cell cycle progression in nematode-induced galls and syncytia. Plant Cell 11:793–808

    PubMed  Google Scholar 

  • de Almeida Engler J, Van Poucke K, Karimi M, De Groodt R, Gheysen G, Engler G (2004) Dynamic cytoskeleton rearrangements in giant cells and syncytia of nematode-infected roots. Plant J 38:12–26

    Article  PubMed  Google Scholar 

  • de Almeida Engler J, Rodiuc N, Smertenko A, Abad P (2010) Plant actin cytoskeleton re-modelling by plant parasitic nematodes. Plant Signal Behav 5:1–5

    Article  Google Scholar 

  • Deeks MJ, Hussey PJ, Davies B (2002) Formins: intermediates in signal-transduction cascades that affect cytoskeletal reorganization. Trends Plant Sci 7:492–498

    Article  PubMed  CAS  Google Scholar 

  • Deeks MJ, Cvrckova F, Machesky LM, Mikitova V, Ketelaar T, Zarsky V, Davies B, Hussey PJ (2005) Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol 168:529–540

    Article  PubMed  CAS  Google Scholar 

  • Didry D, Carlier MF, Pantaloni D (1998) Synergy between actin depolymerizing factor/cofilin and profilin in increasing actin filament turnover. J Biol Chem 273:25602–25611

    Article  PubMed  CAS  Google Scholar 

  • Dong CH, Xia GX, Hong Y, Ramachandran S, Kost B, Chua NH (2001) ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis. Plant Cell 13:1333–1346

    PubMed  CAS  Google Scholar 

  • Faix J, Grosse R (2006) Staying in shape with formins. Dev Cell 10:693–706

    Article  PubMed  CAS  Google Scholar 

  • Favery B, Chelysheva LA, Lebris M, Jammes F, Marmagne A, De Almeida-Engler J, Lecomte P, Vaury C, Arkowitz RA, Abad P (2004) Arabidopsis formin AtFH6 is a plasma membrane-associated protein upregulated in giant cells induced by parasitic nematodes. Plant Cell 16:2529–2540

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Liu Q, Xue Q (2006) Comparative study of rice and Arabidopsis actin-depolymerizing factors gene families. J Plant Physiol 163:69–79

    Article  PubMed  CAS  Google Scholar 

  • Fuller VL, Lilley CJ, Atkinson HJ, Urwin P (2007) Differential gene expression in Arabidopsis following infection by plant-parasitic nematodes Meloidogyne incognita and Heterodera schachtii. Mol Plant Pathol 8:595–609

    Article  PubMed  CAS  Google Scholar 

  • Gaillard J, Neumann E, Van Damme D, Stoppin-Mellet V, Ebel C, Barbier E, Geelen D, Vantard M (2008) Two microtubule-associated proteins of Arabidopsis MAP65s promote antiparallel microtubule bundling. Mol Biol Cell 19:4534–4544

    Article  PubMed  CAS  Google Scholar 

  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499

    Article  PubMed  CAS  Google Scholar 

  • Gheysen G, Fenoll C (2002) Gene expression in nematode feeding sites. Annu Rev Phytopathol 40:191–219

    Article  PubMed  CAS  Google Scholar 

  • Golinowski W, Sobczak M, Kurek W, Grymaszewska G (1997) The structure of syncytia. In: Fenoll C, Grundler FMW, Ohl SA (eds) Cellular and Molecular aspects of Plant-Nematode Interactions, Kluwer Academic Pub, Dordrecht, pp 80–97

    Chapter  Google Scholar 

  • Gross P, Julius C, Schmelzer E, Hahlbrock K (1993) Translocation of cytoplasm and nucleus to fungal penetration sites is associated with depolymerization of microtubules and defence gene activation in infected, cultured parsley cells. EMBO J 12:1735–1744

    PubMed  CAS  Google Scholar 

  • Guiney DG, Lesnick M (2005) Targeting of the actin cytoskeleton during infection by Salmonella strains. Clin Immunol 114:248–255

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez R, Lindeboom JJ, Paredez AR, Emons AM, Ehrhardt DW (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol 11:797–806

    Article  PubMed  CAS  Google Scholar 

  • Hardham AR, Jones DA, Takemoto D (2007) Cytoskeleton and cell wall function in penetration resistance. Curr Opin Plant Biol 10:342–348

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187

    Article  PubMed  CAS  Google Scholar 

  • Hofmann C, Niehl A, Sambade A, Steinmetz A, Heinlein M (2009) Inhibition of tobacco mosaic virus movement by expression of an actin-binding protein. Plant Physiol 149:1810–1823

    Article  PubMed  CAS  Google Scholar 

  • Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol Biol 50:915–924

    Article  PubMed  CAS  Google Scholar 

  • Hussey PJ, Ketelaar T, Deeks MJ (2006) Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol 57:109–125

    Article  PubMed  CAS  Google Scholar 

  • Igarashi H, Orii H, Mori H, Shimmen T, Sonobe S (2000) Isolation of a novel 190 kDa protein from tobacco BY-2 cells: possible involvement in the interaction between actin filaments and MTs. Plant Cell Physiol 41:920–931

    Article  PubMed  CAS  Google Scholar 

  • Ingouff M, Fitz Gerald JN, Guerin C, Robert H, Sorensen MB, Van Damme D, Geelen D, Blanchoin L, Berger F (2005) Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. Nat Cell Biol 7:374–380

    Article  PubMed  CAS  Google Scholar 

  • Jammes F, Lecomte P, de Almeida-Engler J, Bitton F, Martin-Magniette ML, Renou JP, Abad P, Favery B (2005) Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. Plant J 3:447–458

    Article  Google Scholar 

  • Jiang CJ, Sonobe S (1993) Identification and preliminary characterization of a 65 kDa higher-plant MT-associated protein. J Cell Sci 105:891–901

    CAS  Google Scholar 

  • Jin S, Xu R, Wei Y, Goodwin PH (1999) Increased expression of a plant actin gene during a biotrophic interaction between round-leaved mallow, Malva pusilla, and Colletotrichum gloeosporioides f. sp. malvae. Planta 209:487–494

    Article  PubMed  CAS  Google Scholar 

  • Jones MGK, Payne HL (1978) Early stages of nematode-induced giant cell formation in roots of Impatiens balsamina. J Nematol 10:70–84

    PubMed  CAS  Google Scholar 

  • Kandasamy MK, Gilliland LU, McKinney EC, Meagher RB (2001) One plant actin isovariant, ACT7, is induced by auxin and required for normal callus formation. Plant Cell 13:1541–1554

    PubMed  CAS  Google Scholar 

  • Ketelaar T, Allwood EG, Anthony R, Voigt B, Menzel D, Hussey PJ (2004) The actin-interacting protein AIP1 is essential for actin organization and plant development. Curr Biol 14:145–149

    Article  PubMed  CAS  Google Scholar 

  • King SM (2002) Dyneins motor on in plants. Traffic 3:930–931

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Kobayashi I (2007) Depolymerization of the actin cytoskeleton induces defence responses in tobacco plants. J Gen Plant Pathol 73:360–364

    Article  CAS  Google Scholar 

  • Kobayashi Y, Kobayashi I, Funaki Y, Fujimoto S, Takemoto T, Kunoh H (1997) Dynamic reorganization of microfilaments and microtubules is necessary for the expression of non-host resistance in barley coleoptile cells. Plant J 11:525–537

    Article  CAS  Google Scholar 

  • Kost B, Spielhofer P, Chua N-H (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J 16:393–401

    Article  PubMed  CAS  Google Scholar 

  • Kovar DR (2006) Molecular details of formin-mediated actin assembly. Curr Opin Cell Biol 18:11–17

    Article  PubMed  CAS  Google Scholar 

  • Lee L, Klee SK, Evangelista M, Boone C, Pellman D (1999) Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J Cell Biol 144:947–961

    Article  PubMed  CAS  Google Scholar 

  • Lipka V, Panstruga R (2005) Dynamic cellular responses in plant-microbe interactions. Curr Opin Plant Biol 8:625–631

    Article  PubMed  CAS  Google Scholar 

  • Lloyd C, Hussey P (2001) Microtubule-associated proteins in plants—why we need a MAP. Nat Rev Mol Cell Biol 2:40–47

    Article  PubMed  CAS  Google Scholar 

  • Maciver SK, Hussey PJ (2002) The ADF/cofilin family: actin-remodeling proteins. Genome Biol 3:reviews3007

    Google Scholar 

  • Martiniere A, Gargani D, Uzest M, Lautredou N, Blanc S, Drucker M (2009) A role for plant microtubules in the formation of transmission-specific inclusion bodies of Cauliflower mosaic virus. Plant J 58:135–146

    Article  PubMed  CAS  Google Scholar 

  • Mathur J, Spielhofer P, Kost B, Chua N (1999) The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana. Development 126:5559–5568

    PubMed  CAS  Google Scholar 

  • McDowell JM, An YQ, Huang S, McKinney EC, Meagher RB (1996a) The Arabidopsis ACT7 actin gene is expressed in rapidly developing tissues and responds to several external stimuli. Plant Physiol 111:699–711

    Article  CAS  Google Scholar 

  • McDowell JM, Huang S, McKinney EC, An YQ, Meagher RB (1996b) Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics 142:587–602

    CAS  Google Scholar 

  • Miklis M, Consonni C, Bhat RA, Lipka V, Schulze-Lefert P, Panstruga R (2007) Barley MLO modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiol 144:1132–1143

    Article  PubMed  CAS  Google Scholar 

  • Muller S, Fuchs E, Ovecka M, Wysocka-Diller J, Benfey PN, Hauser MT (2002) Two new loci, PLEIADE and HYADE, implicate organ-specific regulation of cytokinesis in Arabidopsis. Plant Physiol 130:312–324

    Article  PubMed  CAS  Google Scholar 

  • Muller S, Smertenko A, Wagner V, Heinrich M, Hussey PJ, Hauser MT (2004) The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr Biol 14:412–417

    Article  PubMed  CAS  Google Scholar 

  • Opalski KS, Schultheiss H, Kogel KH, Huckelhoven R (2005) The receptor-like MLO protein and the RAC/ROP family G-protein RACB modulate actin reorganization in barley attacked by the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei. Plant J 41:291–303

    Article  PubMed  CAS  Google Scholar 

  • Opperman CH, Bird DM, Williamson VM, Rokhsar DS, Burke M, Cohn J, Cromer J, Diener S, Gajan J, Graham S, Houfek TD, Liu Q, Mitros T, Schaff J, Schaffer R, Scholl E, Sosinski BR, Thomas VP, Windham E (2008) Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. Proc Natl Acad Sci U S A 105:14802–14807

    Article  PubMed  CAS  Google Scholar 

  • Palazzo AF, Cook TA, Alberts AS, Gundersen GG (2001) mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat Cell Biol 3:723–729

    Article  PubMed  CAS  Google Scholar 

  • Pavlov D, Muhlrad A, Cooper J, Wear M, Reisler E (2007) Actin filament severing by cofilin. J Mol Biol 365:1350–1358

    Article  PubMed  CAS  Google Scholar 

  • Radtke K, Dohner K, Sodeik B (2006) Viral interactions with the cytoskeleton: a hitchhiker’s guide to the cell. Cell Microbiol 8:387–400

    Article  PubMed  CAS  Google Scholar 

  • Reddy AS, Day IS (2001a) Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics 2:2 doi:10.1186/1471-2164-2-2

    Google Scholar 

  • Reddy AS, Day IS (2001b) Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence. Genome Biol 2:research0024

    Google Scholar 

  • Ruzicka DR, Kandasamy MK, McKinney EC, Burgos-Rivera B, Meagher RB (2007) The ancient subclasses of Arabidopsis actin depolymerizing factor genes exhibit novel and differential expression. Plant J 52:460–472

    Article  PubMed  CAS  Google Scholar 

  • Schmidt SM, Panstruga R (2007) Cytoskeleton functions in plant-microbe interactions. Physiol Mol Plant Pathol 71:135–148

    Article  CAS  Google Scholar 

  • Shimada C, Lipka V, O’Connell R, Okuno T, Schulze-Lefert P, Takano Y (2006) Nonhost resistance in Arabidopsis-Colletotrichum interactions acts at the cell periphery and requires actin filament function. Mol Plant Microbe Interact 19:270–279

    Article  PubMed  CAS  Google Scholar 

  • Skalamera D, Heath MC (1998) Changes in the cytoskeleton accompanying infection-induced nuclear movements and the hypersensitive response in plant cells invaded by rust fungi. Plant J 16:191–200

    Article  PubMed  CAS  Google Scholar 

  • Smertenko A, Saleh N, Igarashi H, Mori H, Hauser-Hahn I, Jiang CJ, Sonobe S, Lloyd CW, Hussey PJ (2000) A new class of microtubule-associated proteins in plants. Nat Cell Biol 2:750–753

    Article  PubMed  CAS  Google Scholar 

  • Smertenko AP, Kaloriti D, Chang HY, Fiserova J, Opatrny Z, Hussey PJ (2008) The C-terminal variable region specifies the dynamic properties of Arabidopsis microtubule-associated protein MAP65 isotypes. Plant Cell 20:3346–3358

    Article  PubMed  CAS  Google Scholar 

  • Staiger CJ (2000) Signaling to the actin cytoskeleton in plants. Annu Rev Plant Physiol Plant Mol Biol 51:257–288

    Article  PubMed  CAS  Google Scholar 

  • Staiger CJ, Blanchoin L (2006) Actin dynamics: old friends with new stories. Curr Opin Plant Biol 9:554–562

    Article  PubMed  CAS  Google Scholar 

  • Staiger CJ, Hussey PJ (2004) Actin and actin-modulating proteins. In: Hussey P (ed) The plant cytoskeleton in cell differentiation and development, Blackwell, Oxford

    Google Scholar 

  • Stoppin-Mellet V, Gaillard J, Vantard M (2002) Functional evidence for in vitro microtubule severing by the plant katanin homologue. Biochem J 365:337–342

    PubMed  CAS  Google Scholar 

  • Sylvester AW (2000) Division decisions and the spatial regulation of cytokinesis. Curr Opin Plant Biol 3:58–66

    Article  PubMed  CAS  Google Scholar 

  • Szakasits D, Heinen P, Wieczorek K, Hofmann J, Wagner F, Kreil DP, Sykacek P, Grundler FM, Bohlmann H (2009) The transcriptome of syncytia induced by the cyst nematode Heterodera schachtii in Arabidopsis roots. Plant J 57:771–784

    Article  PubMed  CAS  Google Scholar 

  • Takemoto D, Hardham AR (2004) The cytoskeleton as a regulator and target of biotic interactions in plants. Plant Physiol 136:3864–3876

    Article  PubMed  CAS  Google Scholar 

  • Takemoto D, Jones DA, Hardham AR (2003) GFP-tagging of cell components reveals the dynamics of subcellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant J 33:775–792

    Article  PubMed  CAS  Google Scholar 

  • Tian M, Chaudhry F, Ruzicka DR, Meagher RB, Staiger CJ, Day B (2009) Arabidopsis actin-depolymerizing factor AtADF4 mediates defense signal transduction triggered by the Pseudomonas syringae effector AvrPphB. Plant Physiol 150:815–824

    Article  PubMed  CAS  Google Scholar 

  • Timmers AC, Auriac MC, Truchet G (1999) Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 126:3617–3628

    PubMed  CAS  Google Scholar 

  • Trosky JE, Liverman AD, Orth K (2008) Yersinia outer proteins: Yops. Cell Microbiol 10:557–565

    Article  PubMed  CAS  Google Scholar 

  • Van Damme D, Bouget FY, Van Poucke K, Inze D, Geelen D (2004) Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. Plant J 40:386–398

    Article  PubMed  Google Scholar 

  • Van Damme D, Vanstraelen M, Geelen D (2007) Cortical division zone establishment in plant cells. Trends Plant Sci 12:458–464

    Article  PubMed  Google Scholar 

  • Vantard M, Blanchoin L (2002) Actin polymerization processes in plant cells. Curr Opin Plant Biol 5:502–506

    Article  PubMed  CAS  Google Scholar 

  • Wasteneys GO (2002) Microtubule organization in the green kingdom: chaos or self-order? J Cell Sci 115:1345–1354

    PubMed  CAS  Google Scholar 

  • Wasteneys GO, Galway ME (2003) Remodeling the cytoskeleton for growth and form: an overview with some new views. Annu Rev Plant Biol 54:691–722

    Article  PubMed  CAS  Google Scholar 

  • Weerasinghe RR, Bird DM, Allen NS (2005) Root-knot nematodes and bacterial Nod factors elicit common signal transduction events in Lotus japonicus. Proc Natl Acad Sci U S A 102:3147–3152

    Article  PubMed  CAS  Google Scholar 

  • Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411:610–613

    Article  PubMed  CAS  Google Scholar 

  • Wiggers RJ, Starr JL, Price HJ (1990) DNA content and variation in chromosome number in plant cells affected by Meloidogyne incognita and M. arenaria. Phytopathology 80:1391–1395

    Article  Google Scholar 

  • Wiggers RJ, Thornton NT, Starr JL (2002) The effects of colchicine on number of giant cell nuclei and nematode development in Pisum sativum infected by Meloidogyne incognita. Nematology 4:107–109

    Article  CAS  Google Scholar 

  • Yalovsky S, Bloch D, Sorek N, Kost B (2008) Regulation of membrane trafficking, cytoskeleton dynamics, and cell polarity by ROP/RAC GTPases. Plant Physiol 147:1527–1543

    Article  PubMed  CAS  Google Scholar 

  • Ye J, Zheng Y, Yan A, Chen N, Wang Z, Huang S, Yang Z (2009) Arabidopsis formin3 directs the formation of actin cables and polarized growth in pollen tubes. Plant Cell 21:3868–3884

    Article  PubMed  CAS  Google Scholar 

  • Yokota K, Fukai E, Madsen LH, Jurkiewicz A, Rueda P, Radutoiu S, Held M, Hossain MS, Szczyglowski K, Morieri G, Oldroyd GE, Downie JA, Nielsen MW, Rusek AM, Sato S, Tabata S, James EK, Oyaizu H, Sandal N, Stougaard J (2009) Rearrangement of actin cytoskeleton mediates invasion of Lotus japonicus roots by Mesorhizobium loti. Plant Cell 21:267–284

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Handa Y, Suzuki T, Ogawa M, Suzuki M, Tamai A, Abe A, Katayama E, Sasakawa C (2006) Microtubule-severing activity of Shigella is pivotal for intercellular spreading. Science 314:985–989

    Article  PubMed  CAS  Google Scholar 

  • Yun BW, Atkinson HA, Gaborit C, Greenland A, Read ND, Pallas JA, Loake GJ (2003) Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. Plant J 34:768–777

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge all authors who participated in our previous work. We also gratefully acknowledge Gilbert Engler for the help on confocal microscopy and critical reading and Andrei Smertenko and Michaël Quentin for critical reading. J. de Almeida Engler was supported by INRA and VIB. B. Favery was supported by INRA, ANR and GENOPLANTE contracts AF2001032 and ANR05GPLA020 “AFINDIS” and by a fellowship from the Ministère de l’Enseignement Supérieur et de la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janice de Almeida Engler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

de Almeida Engler, J., Favery, B. (2011). The Plant Cytoskeleton Remodelling in Nematode Induced Feeding Sites. In: Jones, J., Gheysen, G., Fenoll, C. (eds) Genomics and Molecular Genetics of Plant-Nematode Interactions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0434-3_18

Download citation

Publish with us

Policies and ethics