Skip to main content

Brief Survey on the CP Methods for the Schrödinger Equation

  • Conference paper
Recent Advances in Computational and Applied Mathematics
  • 889 Accesses

Abstract

The CP methods have some salient advantages over other methods, viz.: (i) the accuracy is uniform with respect to the energy E; (ii) there is an easy control of the error; (iii) the step widths are unusually big and the computation is fast; (iv) the form of the algorithm allows a direct evaluation of collateral quantities such as normalisation constant, Prüfer phase, or the derivative of the solution with respect to E; (v) the algorithm is of a form which allows using parallel computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, 8th edn. Dover, New York (1972)

    MATH  Google Scholar 

  2. Calvo, M., Franco, J.M., Montijano, J.I., Ràndez, L.: Comput. Phys. Commun. 178, 732–744 (2008)

    Article  MATH  Google Scholar 

  3. Calvo, M., Franco, J.M., Montijano, J.I., Ràndez, L.: J. Comput. Appl. Math. 223, 387–398 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Canosa, J., Gomes de Oliveira, R.: J. Comput. Phys. 5, 188–207 (1970)

    Article  MATH  Google Scholar 

  5. Gordon, R.G.: J. Chem. Phys. 51, 14–25 (1969)

    Article  MathSciNet  Google Scholar 

  6. Ixaru, L.Gr.: The algebraic approach to the scattering problem. Internal Report IC/69/7, International Centre for Theoretical Physics, Trieste (1969)

    Google Scholar 

  7. Ixaru, L.Gr.: An algebraic solution of the Schrödinger equation. Internal Report IC/69/6, International Centre for Theoretical Physics, Trieste (1969)

    Google Scholar 

  8. Ixaru, L.Gr.: J. Comput. Phys. 9, 159–163 (1972)

    Article  MATH  Google Scholar 

  9. Ixaru, L.Gr.: Numerical Methods for Differential Equations and Applications. Reidel, Dordrecht/Boston/Lancaster (1984)

    MATH  Google Scholar 

  10. Ixaru, L.Gr.: J. Comput. Appl. Math. 125, 347–357 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ixaru, L.Gr.: Comput. Phys. Commun. 147, 834–852 (2002)

    Article  MATH  Google Scholar 

  12. Ixaru, L.Gr.: Comput. Phys. Commun. 177, 897–907 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ixaru, L.Gr., Rizea, M.: Comput. Phys. Commun. 19, 23–27 (1980)

    Article  Google Scholar 

  14. Ixaru, L.Gr., Rizea, M.: J. Comput. Phys. 73, 306–324 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ixaru, L.Gr., Rizea, M., Vertse, T.: Comput. Phys. Commun. 85, 217–230 (1995)

    Article  MATH  Google Scholar 

  16. Ixaru, L.Gr., De Meyer, H., Vanden Berghe, G.: J. Comput. Appl. Math. 88, 289 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ixaru, L.Gr., De Meyer, H., Vanden Berghe, G.: Comput. Phys. Commun. 118, 259 (1999)

    Article  MATH  Google Scholar 

  18. Kalogiratou, Z., Monovasilis, Th., Simos, T.E.: Comput. Phys. Commun. 180, 167–176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ledoux, V., Van Daele, M., Vanden Berghe, G.: Comput. Phys. Commun. 162, 151–165 (2004)

    Article  MATH  Google Scholar 

  20. Ledoux, V., Ixaru, L.Gr., Rizea, M., Van Daele, M., Vanden Berghe, G.: Comput. Phys. Commun. 175, 424–439 (2006)

    Article  MATH  Google Scholar 

  21. Ledoux, V., Van Daele, M., Vanden Berghe, G.: Comput. Phys. Commun. 174, 357–370 (2006)

    Article  MATH  Google Scholar 

  22. Ledoux, V., Van Daele, M., Vanden Berghe, G.: Comput. Phys. Commun. 180, 241–250 (2009)

    Article  MATH  Google Scholar 

  23. NAG Fortran Library Manual: S17AGF, S17Astron. J.F, S17AHF, S17AKF, Mark 15, The Numerical Algorithms Group Limited, Oxford (1991)

    Google Scholar 

  24. Pruess, S.: SIAM J. Numer. Anal. 10, 55–68 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pryce, J.D.: Numerical Solution of Sturm-Liouville Problems. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  26. Simos, T.E.: Comput. Phys. Commun. 178, 199–207 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vanden Berghe, G., Van Daele, M.: J. Comput. Appl. Math. 200, 140–153 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vanden Berghe, G., Van Daele, M.: Appl. Numer. Math. 59, 815–829 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported under contract IDEI-119 (Romania).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gr. Ixaru .

Editor information

Editors and Affiliations

Appendix

Appendix

Functions ξ(Z),η 0(Z),η 1(Z),…, originally introduced in [9] (they are denoted there as \(\bar{\xi}(Z),\bar{\eta}_{0}(Z),\bar{\eta}_{1}(Z),\ldots)\), are defined as follows:

$$\xi (Z)=\left\{ \begin{matrix} \cos (|Z{{|}^{{1}/{2}\;}})\,\,if\,Z\le 0, \\ \cosh ({{Z}^{{1}/{2}\;}})\,\,if\,Z>0, \\ \end{matrix} \right.\ $$
(A.1)
$${{\eta }_{0}}(Z)=\left\{ \begin{matrix} {\sin (|Z{{|}^{{1}/{2}\;}})}/{|Z{{|}^{{1}/{2}\;}}}\;\,\,\,\,\,if\,Z<0, \\ \begin{matrix} 1 & if\,Z=0, \\ \end{matrix} \\ \begin{matrix} {\sinh ({{Z}^{{1}/{2}\;}})}/{{{Z}^{{1}/{2}\;}}}\; & if\,Z>0, \\ \end{matrix} \\ \end{matrix} \right.\ $$
(A.2)

η 1(Z),η 2(Z),…, are constructed by recurrence:

$$\begin{aligned}[c]\eta_1(Z)&=[\xi(Z)-\eta_0(Z)]/Z,\\\eta _m&=[\eta_{m-2}(Z)-(2m-1)\eta_{m-1}(Z)]/Z,\quad m=2,3,\ldots.\end{aligned}$$
(A.3)

Some useful properties are as follows:

  1. (i)

    Series expansion:

    $$\eta_m(Z)=2^m\sum_{q=0}^\infty{g_{mq}Z^q\over (2q+2m+1)!},$$
    (A.4)

    with

    $$g_{mq}=\begin{cases}1&\mbox{if}\ m=0,\\(q+1)(q+2)\cdots(q+m)&\mbox{if}\ m>0 .\end{cases}$$
    (A.5)

    In particular,

    $$\eta_m(0)={1\over(2m+1)!!},$$
    (A.6)

    where (2m+1)!!=1×3×5×⋅⋅⋅×(2m+1).

  2. (ii)

    Asymptotic behaviour at large |Z|:

    $$\eta_m(Z)\approx \begin{cases}\xi(Z)/Z^{(m+1)/2}&\mbox{for odd}\ m,\\\eta_0(Z)/Z^{m/2}&\mbox{for\ even}\ m .\end{cases}$$
    (A.7)
  3. (iii)

    Differentiation properties:

    $$\xi'(Z)={1\over2}\eta_0(Z),\qquad\eta'_m(Z)={1\over2}\eta_{m+1}(Z),\quad m=0,1,2,\ldots.$$
    (A.8)

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Ixaru, L.G. (2011). Brief Survey on the CP Methods for the Schrödinger Equation. In: Simos, T. (eds) Recent Advances in Computational and Applied Mathematics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9981-5_7

Download citation

Publish with us

Policies and ethics