Skip to main content

Roles of Micro-cracking and Phase Transition on Electric Fatigue for [001]-Oriented \({\rm Pb}({\rm Mg}_{1/3}{\rm Nb}_{2/3}){\rm O}_{3}\hbox{-}{\rm PbTiO}_{3}\) Single Crystals

  • Conference paper
  • First Online:
IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 24))

  • 977 Accesses

Abstract

In-situ observations of microstructure and polarization degradation under cyclic electric loadings are carried out for [001]-oriented \(\mathrm{Pb(M{g}_{1/3}N{b}_{2/3}){O}_{3}\mbox{ -}PbTi{O}_{3}}\)ferroelectric single crystals. Direct evidences of the effects of micro-cracking and phase transition on the polarization degradation are revealed. Upon cyclic electric loading with a comparatively low field magnitude, there is no phase transition while the propagation of micro-cracks significantly reduces the polarization. When electric loading is cycled under a high field magnitude, the single crystal transforms from a rhombohedral phase to a monoclinic phase. Both micro-cracking and phase transition inhibit ferroelectric domain switching and reduces the number of electric dipoles that can efficiently switch their orientation under cyclic electric field. The phase transition degrades the polarization to a greater degree than do the micro-cracks. The findings are of importance concerning the long-term reliability of the high performance PMN-PT single crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82:1804–1811

    Article  Google Scholar 

  2. Liu S, Park SE, Shrout TR, Cross LE (1999) Electric field dependence of piezoelectric properties for rhombohedral \(0.955\mathrm{Pb(Z{n}_{1/3}N{b}_{2/3}){O}_{3}\mbox{ -}0.045PbTi{O}_{3}}\)single crystals. J Appl Phys 85:2810–2814

    Article  Google Scholar 

  3. Chen J, Panda R (2005) Commercialization of piezoelectric single crystals for medical imaging applications. IEEE international ultrasounics symposium proceedings, Rotterdam, The Netherlands, 18–21 Sept, pp.235

    Google Scholar 

  4. Fu H, Cohen RE (2000) Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403:281–283

    Article  Google Scholar 

  5. Vanderbilt D, Cohen MH (2001) Monoclinic and triclinic phases in higher-order Devonshire theory. Phy Rev B 63:094108

    Article  Google Scholar 

  6. Ye ZG, Noheda B, Dong M, Cox D, Shirane G (2001) Monoclinic phase in the relaxor-based piezoelectric/ferroelectric \(\mathrm{Pb(M{g}_{1/3}N{b}_{2/3}){O}_{3}}\mbox{ \textendash }{\mathrm{PbTiO}}_{3}\)system. Phy Rev B 64:184114

    Article  Google Scholar 

  7. Noheda B, Cox DE, Shirane G, Gao J, Ye ZG (2002) Phase diagram of the relaxor (1-x) \(\mathrm{Pb(M{g}_{1/3}N{b}_{2/3}){O}_{3}}\mbox{ \textendash }{\mathrm{xPbTiO}}_{3}\). Phys Rev B 66:054104

    Article  Google Scholar 

  8. Noheda B, Cox DE, Shirane G, Park SE, Cross LE, Zhong Z (2001) Polarization rotation via a monoclinic phase in the piezoelectric \(92\%{\mathrm{PbZ{n}_{1/3}N{b}_{2/3}O}}_{3-}8\%{\mathrm{PbTiO}}_{3}\). Phy Rev Lett 86:3891–3894

    Article  Google Scholar 

  9. Viehland D, Powers J, Cross LE, Li JF (2001) Importance of random fields on the properties and ferroelectric phase stability of 001 oriented \(0.7\,\mathrm{Pb(M{g}_{1/3}N{b}_{2/3}){O}_{3}}\mbox{ \textendash }0.3\,{\mathrm{PbTiO}}_{3}\)crystals. Appl Phys Lett 78:3508–3510

    Article  Google Scholar 

  10. Viehland D (2000) Symmetry-adaptive ferroelectric mesostates in oriented \(\mathrm{Pb(B{I}_{1/3}BI{I}_{2/3})}\) \(\mathrm{{O}_{3}}\mbox{ \textendash }{\mathrm{PbTiO}}_{3}\)crystals. J Appl Phys 88:4794–4806

    Article  Google Scholar 

  11. Liu M, Hsia KJ (2003) Locking of electric-field-induced non-180∘domain switching and phase transition in ferroelectric materials upon cyclic electric fatigue. Appl Phys Lett 83:3978–3980

    Article  Google Scholar 

  12. Arias S, Serebrinsky, M. Ortiz (2006) A phenomenological cohesive model of ferroelectric fatigue. Acta Materialia 54:975–984

    Article  Google Scholar 

  13. Jiang QY, Cao WW, Cross LE (1994) Electric fatigue in lead ziconate titanate ceramics. J Am Ceram Soc 77:211–215

    Article  Google Scholar 

  14. J Nuffer, Lupascu DC, Rodel J (2001) Microcrack clouds in fatigued electrostrictive 9.5/65/35 PLZT. J Eur Ceram Soc 21:1421–1423

    Article  Google Scholar 

  15. Lupascu DC, Rodel J (2005) Fatigue in bulk lead zirconate titanate actuator materials. Adv Eng Mater 7:882–898

    Article  Google Scholar 

  16. Zhou LJ, Rixecker G, Zimmermann A, Aldinger F, Zhao Z, Nygren M (2005) Electric fatigue in antiferroelectric lead zirconate stannate titanate ceramics prepared by spark plasma sintering. J Am Ceram Soc 88:2952–2954

    Google Scholar 

  17. Shvartsman VV, Kholkin AL, Verdier C, Lupascu DC (2005) Fatigue-induced evolution of domain structure in ferroelectric lead zirconate titanate ceramics investigated by piezoresponse force microscopy. J Appl Phys 98:094109

    Article  Google Scholar 

  18. Chou CC, Hou CS, Yeh TH (2005) Domain pinning behavior of ferroelectric Pb1−x Sr x TiO3ceramics. J Eur Ceram Soc 25:2505–2508

    Article  Google Scholar 

  19. Le JK, Yi JY, Hon K S (2004) Physical mechanism for orientation dependence of ferroelectric fatigue in \(\mathrm{Pb(Z{n}_{1/3}N{b}_{2/3)}{O}_{3}\mbox{ -}5\%\ PbTi{O}_{3}}\)crystals. J Appl Phys 96:7471–7475

    Article  Google Scholar 

  20. Stolichnov I, Tagantsev A, Setter N, Cross JS, Tsukada M (1999) Top-interface-controlled switching and fatigue endurance of (Pb, La)(Zr, Ti)O3ferroelectric capacitors. Appl Phys Lett 74:3352–3354

    Article  Google Scholar 

  21. Takemula K, Ozgul M, Bornand V, McKinstry ST (2000) Fatigue anisotropy in single crystal \(\mathrm{Pb(Z{n}_{1/3}N{b}_{2/3}){O}_{3}\mbox{ -}PbTi{O}_{3}}\). J Appl Phys 88:7272–7277

    Article  Google Scholar 

  22. W. Yang (2002) Mechatronic Reliability. 1st edn. THU-Springer-Verlag, Berlin

    Google Scholar 

  23. Furuta A, Uchino K (1993) Dynamic observation of crack propagation in piezoelectric multilayer actuators. J Am Ceram Soc 76:1615–1617

    Article  Google Scholar 

  24. Cao H C, Evans AG (1994) Electric-field-induced crack growth in piezoelectrics. J Am Ceram Soc 77:1783–1786

    Article  Google Scholar 

  25. Fang F, Yang W, Zhu T (1999) Crack tip 90∘domain switching in tetragonal lanthanum modified lead zirconate titanate under an electric field. J Mater Res 14:2940–2944

    Article  Google Scholar 

  26. Fang DN, Liu B, Sun CT (2004) Fatigue crack growth in ferroelectric ceramics driven by alternating electric fields. J Am Ceram Soc 87:840–846

    Article  Google Scholar 

  27. Shieh J, Huber JE, Fleck NA (2006) Fatigue crack growth in ferroelectrics under electrical loading. J Eur Ceram Soc 26:95–109

    Article  Google Scholar 

  28. Fang F, Yang W, Zhang FC, H Qing (2008) Electric field-induced crack growth and domain structure evolution for [100]- and [101]-oriented 72%Pb(Mg1/3Nb2/3)O3-28%PbTiO3 ferroelectric single crystals. J Mater Res 23:3387–3395

    Article  Google Scholar 

  29. Fang F, Yang W, Zhang FC, Qing H (2007) Domain structure evolution and fatigue cracking of<001>-oriented (Pb(Mg1/3Nb2/3)O3)0.67(PbTiO3)0.33 ferroelectric single crystals under cyclic electric loading. Appl Phys Lett 91:081903

    Google Scholar 

  30. Davis M, Damjanovic D, Setter N (2006) Electric-field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals. Phys Rev B 73:014115

    Article  Google Scholar 

  31. Bai F, Wang N, Li JF, Viehland D, Gehring PM (2004) X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in \(0.7\mathrm{Pb(M{g}_{1/3}N{b}_{2/3})\mbox{ -}0.3PbTi{O}_{3}}\)crystal. J Appl Phys 96:620–1627

    Google Scholar 

  32. Tan X, Xu Z, Shang JK (2000) Direct observations of electric field-induced domain boundary cracking in<001>oriented piezoelectric \(\mathrm{Pb(M{g}_{1/3}N{b}_{2/3}){O}_{3}}\mbox{ \textendash }{\mathrm{PbTiO}}_{3}\)single crystal. Appl Phys Lett 77:1529–1531

    Article  Google Scholar 

  33. Xu Z (2003) In situ TEM study of electric field-induced microcracking in piezoelectric single crystals. Mater Sci Eng B 99:106–111

    Article  Google Scholar 

  34. Jiang YJ, Fang D N (2007) In-situ observation of electric-field-induced domain switching and crack propagation in poled PMNT 62/38 single crystals. Mater Lett 61:5047–5049

    Article  Google Scholar 

  35. Xu GS, Luo HS, Guo YP, Gao YQ, Xu HQ, Qi ZY, Zhong WZ, Yin ZW (2001) Growth and piezoelectric properties of \(\mathrm{Pb(M{g}_{1/3}N{b}_{2/3}){O}_{3}}\mbox{ \textendash }{\mathrm{PbTiO}}_{3}\)crystals by the modified Bridgman technique. Solid State Commun 120:321–324

    Article  Google Scholar 

  36. Viehland D, Li JF (2004) Domain structure changes in (1-x) with composition, dc bias, and ac field. J Appl Phys 96:3379–3381

    Article  Google Scholar 

  37. Fang F, Luo X, Yang W (2009) Polarization rotation and multiphase coexistence for \(\mathrm{Pb((M{g}_{1/3}N{b}_{2/3}){O}_{3}}\mbox{ \textendash }{\mathrm{PbTiO}}_{3}\)single crystals at the morphotropc phase boundary under electric loading. Phys Rev B 79:174118

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the supports from the National Natural Science Foundation through the Grant Number 10772090 and from the National Key Projects for Basic Researches (973). The authors express sincere thanks to Prof. H. S. Luo in Shanghai Institute of Ceramics, Chinese Academy of Sciences, for providing us the single crystal samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Fang, F., Yang, W., Luo, X. (2011). Roles of Micro-cracking and Phase Transition on Electric Fatigue for [001]-Oriented \({\rm Pb}({\rm Mg}_{1/3}{\rm Nb}_{2/3}){\rm O}_{3}\hbox{-}{\rm PbTiO}_{3}\) Single Crystals. In: Kuna, M., Ricoeur, A. (eds) IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials. IUTAM Bookseries, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9887-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9887-0_24

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9886-3

  • Online ISBN: 978-90-481-9887-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics