Skip to main content

Insect Cells for Heterologous Production of Recombinant Proteins

  • Chapter
  • First Online:
Insect Biotechnology

Part of the book series: Biologically-Inspired Systems ((BISY,volume 2))

Abstract

Heterologous gene expression has become an indispensable and powerful tool for the production and subsequent functional analysis of proteins that are difficult to purify from their natural sources. Furthermore, it is the method of choice for the production of variants by introducing site-specific mutations into the DNA encoding the protein of interest. However, many systems are biased by disadvantages. The inability of bacteria to confer important post-translational modifications often results in functional failure of the recombinant protein. In addition, disulfide bonds are not formed properly in bacterial systems. Mammalian cells on the other hand modify properly, but they generally provide low product yields. Insect cells have become an extremely valuable alternative to these established systems. Several cell lines are in use mostly from butterflies and flies. These cells can be infected with insect-specific viruses encoding the desired protein or they are stably transfected with corresponding plasmids for continuous protein production. Besides comparably high product yields, insect cells do glycosylate secreted proteins at appropriate sites, with somewhat altered usage of sugar residues. This often helps to overcome solubility problems and may render the product more homogeneous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S, Bassiri M, Banerjee AK, Yilma T (1993) Immunological characterization of the VSV nucleocapsid (N) protein expressed by recombinant baculovirus in Spodoptera exigua larva: use in differential diagnosis between vaccinated and infected animals. Virology 192:207–216

    Article  PubMed  CAS  Google Scholar 

  • Andersons D, Engstrom A, Josephson S, Hansson L, Steiner H (1991) Biologically active and amidated cecropin produced in a baculovirus expression system from a fusion construct containing the antibody-binding part of protein A. Biochem J 280(Pt 1):219–224

    PubMed  CAS  Google Scholar 

  • Ayres MD, Howard SC, Kuzio J, Lopez-Ferber M, Possee RD (1994) The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202:586–605

    Article  PubMed  CAS  Google Scholar 

  • Bachrach HL, Callis JJ, Hess WR, Patty RE (1957) A plaque assay for foot-and-mouth disease virus and kinetics of virus reproduction. Virology 4:224–236

    Article  PubMed  CAS  Google Scholar 

  • Becker C, Kruse MN, Slotty KA, Köhler D, Harris JR, Rösmann S, Sterchi EE, Stöcker W (2003) Differences in the activation mechanism between the alpha and beta subunits of human meprin. Biol Chem 384:825–831

    Article  PubMed  CAS  Google Scholar 

  • Becker-Pauly C, Höwel M, Walker T, Vlad A, Aufenvenne K, Oji V, Lottaz D, Sterchi EE, Debela M, Magdolen V, Traupe H, Stöcker W (2007) The alpha and beta subunits of the metalloprotease meprin are expressed in separate layers of human epidermis, revealing different functions in keratinocyte proliferation and differentiation. J Invest Dermatol 127:1115–1125

    Article  PubMed  CAS  Google Scholar 

  • Bunch TA, Goldstein LS (1989) The conditional inhibition of gene expression in cultured Drosophila cells by antisense RNA. Nucleic Acids Res 17:9761–9782

    Article  PubMed  CAS  Google Scholar 

  • Bunch TA, Grinblat Y, Goldstein LS (1988) Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res 16:1043–1061

    Article  PubMed  CAS  Google Scholar 

  • Caron AW, Archambault J, Massie B (1990) High-level recombinant protein production in bioreactors using the baculovirus-insect cell expression system. Biotechnol Bioeng 36:1133–1140

    Article  PubMed  CAS  Google Scholar 

  • Cooper PD (1961) The plaque assay of animal viruses. Adv Virus Res 8:319–378

    Article  PubMed  CAS  Google Scholar 

  • Entwistle PFE, Evans HF (1985) Viral Control. Pergamon Press, Oxford

    Google Scholar 

  • Faulkner P, Kuzio J, Williams GV, Wilson JA (1997) Analysis of p74, a PDV envelope protein of Autographa californica nucleopolyhedrovirus required for occlusion body infectivity in vivo. J Gen Virol 78(Pt 12):3091–3100

    PubMed  CAS  Google Scholar 

  • Federici BA, Hice RH (1997) Organization and molecular characterization of genes in the polyhedrin region of the Anagrapha falcifera multinucleocapsid NPV. Arch Virol 142:333–348

    Article  PubMed  CAS  Google Scholar 

  • Flipsen JT, Martens JW, van Oers MM, Vlak JM, van Lent JW (1995) Passage of Autographa californica nuclear polyhedrosis virus through the midgut epithelium of Spodoptera exigua larvae. Virology 208:328–335

    Article  PubMed  CAS  Google Scholar 

  • Grace TD (1962) Establishment of four strains of cells from insect tissues grown in vitro. Nature 195:788–789

    Article  PubMed  CAS  Google Scholar 

  • Granados RR, Derksen AC, Dwyer KG (1986) Replication of the Trichoplusia ni granulosis and nuclear polyhedrosis viruses in cell cultures. Virology 152:472–476

    Article  PubMed  CAS  Google Scholar 

  • Gretch DG, Sturley SL, Friesen PD, Beckage NE, Attie AD (1991) Baculovirus-mediated expression of human apolipoprotein E in Manduca sexta larvae generates particles that bind to the low density lipoprotein receptor. Proc Natl Acad Sci U S A 88:8530–8533

    Article  PubMed  CAS  Google Scholar 

  • Guarino LA, Summers MD (1986) Functional mapping of a trans-activating gene required for expression of a baculovirus delayed-early gene. J Virol 57:563–571

    PubMed  CAS  Google Scholar 

  • Guarino LA, Summers MD (1987) Nucleotide Sequence and Temporal Expression of a Baculovirus Regulatory Gene. J Virol 61:2091–2099

    PubMed  CAS  Google Scholar 

  • Hink WF (1972) Insect tissue culture. Adv Appl Microbiol 15:157–214

    Article  PubMed  CAS  Google Scholar 

  • Hollister JR, Jarvis DL (2001) Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian beta 1,4-galactosyltransferase and alpha 2,6-sialyltransferase genes. Glycobiology 11:1–9

    Article  PubMed  CAS  Google Scholar 

  • Hollister JR, Shaper JH, Jarvis DL (1998) Stable expression of mammalian beta 1,4-galactosyltransferase extends the N-glycosylation pathway in insect cells. Glycobiology 8:473–480

    Article  PubMed  CAS  Google Scholar 

  • Horton HM, Burand JP (1993) Saturable attachment sites for polyhedron-derived baculovirus on insect cells and evidence for entry via direct membrane fusion. J Virol 67:1860–1868

    PubMed  CAS  Google Scholar 

  • Hu Z, Luijckx T, van Dinten LC, van Oers MM, Hajos JP, Bianchi FJ, van Lent JW, Zuidema D, Vlak JM (1999) Specificity of polyhedrin in the generation of baculovirus occlusion bodies. J Gen Virol 80(Pt 4):1045–1053

    PubMed  CAS  Google Scholar 

  • Jacobs PP, Callewaert N (2009) N-glycosylation engineering of biopharmaceutical expression systems. Curr Mol Med 9:774–800

    Article  PubMed  CAS  Google Scholar 

  • Jarvis DL, Bohlmeyer DA, Garcia A Jr. (1992) Enhancement of polyhedrin nuclear localization during baculovirus infection. J Virol 66:6903–6911

    PubMed  CAS  Google Scholar 

  • Jarvis DL, Fleming JA, Kovacs GR, Summers MD, Guarino LA (1990) Use of early baculovirus promoters for continuous expression and efficient processing of foreign gene products in stably transformed lepidopteran cells. Biotechnology 8:950–955

    Article  PubMed  CAS  Google Scholar 

  • Jarvis DL, Summers MD (1989) Glycosylation and secretion of human tissue plasminogen activator in recombinant baculovirus-infected insect cells. Mol Cell Biol 9:214–223

    PubMed  CAS  Google Scholar 

  • Jarvis DL, Weinkauf C, Guarino LA (1996) Immediate-early baculovirus vectors for foreign gene expression in transformed or infected insect cells. Protein Expr Purif 8:191–203

    Article  PubMed  CAS  Google Scholar 

  • Kikhno I, Gutierrez S, Croizier L, Croizier G, Ferber ML (2002) Characterization of pif, a gene required for the per os infectivity of Spodoptera littoralis nucleopolyhedrovirus. J Gen Virol 83:3013–3022

    PubMed  CAS  Google Scholar 

  • Köhler D, Kruse M, Stöcker W, Sterchi EE (2000) Heterologously overexpressed, affinity-purified human meprin alpha is functionally active and cleaves components of the basement membrane in vitro. FEBS Lett 465:2–7

    Article  PubMed  Google Scholar 

  • Krasnow MA, Saffman EE, Kornfeld K, Hogness DS (1989) Transcriptional activation and repression by Ultrabithorax proteins in cultured Drosophila cells. Cell 57:1031–1043

    Article  PubMed  CAS  Google Scholar 

  • Kuroda K, Groner A, Frese K, Drenckhahn D, Hauser C, Rott R, Doerfler W, Klenk HD (1989) Synthesis of biologically active influenza virus hemagglutinin in insect larvae. J Virol 63:1677–1685

    PubMed  CAS  Google Scholar 

  • Laprise MH, Grondin F, Dubois CM (1998) Enhanced TGFbeta1 maturation in high five cells coinfected with recombinant baculovirus encoding the convertase furin/pace: improved technology for the production of recombinant proproteins in insect cells. Biotechnol Bioeng 58:85–91

    Article  PubMed  CAS  Google Scholar 

  • Luckow VA, Lee SC, Barry GF, Olins PO (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67:4566–4579

    PubMed  CAS  Google Scholar 

  • Lynn DE (1996) Development and characterization of insect cell lines. Cytotechnology 20:3–11

    Article  Google Scholar 

  • Lynn DE (2001) Novel techniques to establish new insect cell lines. In Vitro Cell Dev Biol Anim 37:319–321

    PubMed  CAS  Google Scholar 

  • Maeda S, Kawai T, Obinata M, Fujiwara H, Horiuchi T, Saeki Y, Sato Y, Furusawa M (1985) Production of human alpha-interferon in silkworm using a baculovirus vector. Nature 315:592–594

    Article  PubMed  CAS  Google Scholar 

  • Marchand P, Tang J, Johnson GD, Bond JS (1995) COOH-terminal proteolytic processing of secreted and membrane forms of the alpha subunit of the metalloprotease meprin A. Requirement of the I domain for processing in the endoplasmic reticulum. J Biol Chem 270:5449–5456

    Article  PubMed  CAS  Google Scholar 

  • Mathavan S, Gautvik VT, Rokkones E, Olstad OK, Kareem BN, Maeda S, Gautvik KM (1995) High-level production of human parathyroid hormone in Bombyx mori larvae and BmN cells using recombinant baculovirus. Gene 167:33–39

    Article  PubMed  CAS  Google Scholar 

  • Medin JA, Hunt L, Gathy K, Evans RK, Coleman MS (1990) Efficient, low-cost protein factories: expression of human adenosine deaminase in baculovirus-infected insect larvae. Proc Natl Acad Sci U S A 87:2760–2764

    Article  PubMed  CAS  Google Scholar 

  • Miyajima A, Schreurs J, Otsu K, Kondo A, Arai K, Maeda S (1987) Use of the silkworm, Bombyx mori, and an insect baculovirus vector for high-level expression and secretion of biologically active mouse interleukin-3. Gene 58:273–281

    Article  PubMed  CAS  Google Scholar 

  • Murhammer DW (2007) Baculovirus and Insect Cell Expression Protocols. Humana Press, Totowa, NJ

    Book  Google Scholar 

  • Murphy CI, Lennick M, Lehar SM, Beltz GA, Young E (1990) Temporal expression of HIV-1 envelope proteins in baculovirus-infected insect cells: implications for glycosylation and CD4 binding. Genet Anal Tech Appl 7:160–171

    Article  PubMed  CAS  Google Scholar 

  • Neutra R, Levi BZ, Shoham Y (1992) Optimization of protein-production by the baculovirus expression vector system in shake flasks. Appl Microbiol Biotechnol 37:74–78

    Article  PubMed  CAS  Google Scholar 

  • Pham MQ, Naggie S, Wier M, Cha HJ, Bentley WE (1999) Human interleukin-2 production in insect (Trichoplusia ni) larvae: effects and partial control of proteolysis. Biotechnol Bioeng 62:175–182

    Article  PubMed  CAS  Google Scholar 

  • Pijlman GP, Pruijssers AJ, Vlak JM (2003) Identification of pif-2, a third conserved baculovirus gene required for per os infection of insects. J Gen Virol 84:2041–2049

    Article  PubMed  CAS  Google Scholar 

  • Prosise WW, Yarosh-Tomaine T, Lozewski Z, Ingram RN, Zou J, Liu JJ, Zhu F, Taremi SS, Le HV, Wang W (2004) Protease domain of human ADAM33 produced by Drosophila S2 cells. Protein Expr Purif 38:292–301

    Article  PubMed  CAS  Google Scholar 

  • Richardson CD, Banville M, Lalumiere M, Vialard J, Meighen EA (1992) Bacterial luciferase produced with rapid-screening baculovirus vectors is a sensitive reporter for infection of insect cells and larvae. Intervirology 34:213–227

    PubMed  CAS  Google Scholar 

  • Schneider I (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27:353–365

    PubMed  CAS  Google Scholar 

  • Simcox AA, Sobeih MM, Shearn A (1985) Establishment and characterization of continuous cell lines derived from temperature-sensitive mutants of Drosophila melanogaster. Somat Cell Mol Genet 11:63–70

    Article  PubMed  CAS  Google Scholar 

  • Smith GE, Summers MD, Fraser MJ (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 3:2156–2165

    PubMed  CAS  Google Scholar 

  • Thiem SM, Miller LK (1989) Identification, sequence, and transcriptional mapping of the major capsid protein gene of the baculovirus Autographa californica nuclear polyhedrosis virus. J Virol 63:2008–2018

    PubMed  CAS  Google Scholar 

  • Van Regenmortel MH (2000) On the relative merits of italics, Latin and binomial nomenclature in virus taxonomy. Arch Virol 145:433–441

    Article  PubMed  Google Scholar 

  • Vaughn JL, Goodwin RH, Tompkins GJ, McCawley P (1977) The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro 13:213–217

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Hammer DA, Granados RR (1994) Interaction of Trichoplusia ni granulosis virus-encoded enhancin with the midgut epithelium and peritrophic membrane of four lepidopteran insects. J Gen Virol 75(Pt 8):1961–1967

    Article  PubMed  CAS  Google Scholar 

  • Washburn JO, Chan EY, Volkman LE, Aumiller JJ, Jarvis DL (2003) Early synthesis of budded virus envelope fusion protein GP64 enhances Autographa californica multicapsid nucleopolyhedrovirus virulence in orally infected Heliothis virescens. J Virol 77:280–290

    Article  PubMed  CAS  Google Scholar 

  • Wermter C, Höwel M, Hintze V, Bombosch B, Aufenvenne K, Yiallouros I, Stöcker W (2007) The protease domain of procollagen C-proteinase (BMP1) lacks substrate selectivity, which is conferred by non-proteolytic domains. Biol Chem 388:513–521

    Article  PubMed  CAS  Google Scholar 

  • Whitt MA, Manning JS (1988) A phosphorylated 34-kDa protein and a subpopulation of polyhedrin are thiol linked to the carbohydrate layer surrounding a baculovirus occlusion body. Virology 163:33–42

    Article  PubMed  CAS  Google Scholar 

  • Williams GV, Rohel DZ, Kuzio J, Faulkner P (1989) A cytopathological investigation of Autographa californica nuclear polyhedrosis virus p10 gene function using insertion/deletion mutants. J Gen Virol 70(Pt 1):187–202

    Article  PubMed  CAS  Google Scholar 

  • Wilson ME, Mainprize TH, Friesen PD, Miller LK (1987) Location, transcription, and sequence of a baculovirus gene encoding a small arginine-rich polypeptide. J Virol 61:661–666

    PubMed  CAS  Google Scholar 

  • Winslow GM, Hayashi S, Krasnow M, Hogness DS, Scott MP (1989) Transcriptional activation by the Antennapedia and fushi tarazu proteins in cultured Drosophila cells. Cell 57:1017–1030

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Nakajima Y, Natori S (1990) Production of recombinant sarcotoxin IA in Bombyx mori cells. Biochem J 272:633–636

    PubMed  CAS  Google Scholar 

  • Yano H, Yamamoto-Hino M, Abe M, Kuwahara R, Haraguchi S, Kusaka I, Awano W, Kinoshita-Toyoda A, Toyoda H, Goto S (2005) Distinct functional units of the Golgi complex in Drosophila cells. Proc Natl Acad Sci U S A 102:13467–13472

    Article  PubMed  CAS  Google Scholar 

  • Zanotto PM, Kessing BD, Maruniak JE (1993) Phylogenetic interrelationships among baculoviruses: evolutionary rates and host associations. J Invertebr Pathol 62:147–164

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Becker-Pauly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Becker-Pauly, C., Stöcker, W. (2011). Insect Cells for Heterologous Production of Recombinant Proteins. In: Vilcinskas, A. (eds) Insect Biotechnology. Biologically-Inspired Systems, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9641-8_10

Download citation

Publish with us

Policies and ethics