Skip to main content

Cancer Therapy by Targeting Vascular Endothelial Cell Growth Factor- and Non-Vascular Endothelial Cell Growth Factor-Mediated Angiogenesis

  • Chapter
  • First Online:
Book cover Therapeutic Angiogenesis for Vascular Diseases
  • 713 Accesses

Abstract

Both genetic alterations and epigenetic factors contribute to the switch of the angiogenic phenotype in pathological tissues. Although signaling pathways of individual angiogenic factors are relatively well characterized, the complex interplay between these angiogenic factors in the tumor environment remains poorly understood. Recent work demonstrates that tumor-derived angiogenic factors display intimate cross-communications at the ligand, receptor and intracellular signaling levels to promote tumor angiogenesis. The dynamic interplay between these angiogenic factors might lead to the switch of angiogenic profiles, alteration of the vascular architecture and function, shifting targets of antiangiogenic drugs, and development of drug resistance. This article highlights several recent examples of positive and negative interplays between tumor-produced angiogenic factors and proposes a new paradigm for therapeutic intervention of tumor angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn GO, Brown JM (2008) Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell 13, 193–205.

    Article  PubMed  CAS  Google Scholar 

  • Almog N, Henke V, et al. (2006) Prolonged dormancy of human liposarcoma is associated with impaired tumor angiogenesis. Faseb J 20, 947–949.

    Article  PubMed  CAS  Google Scholar 

  • Arbiser JL, Moses MA, et al. (1997) Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci USA 94, 861–866.

    Article  PubMed  CAS  Google Scholar 

  • Arteaga CL (2003) EGF receptor as a therapeutic target: Patient selection and mechanisms of resistance to receptor-targeted drugs. J Clin Oncol 21, 289 s–291 s.

    Article  Google Scholar 

  • Asahara T, Bauters C, et al. (1995) Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 92, II365–371.

    Article  PubMed  CAS  Google Scholar 

  • Autiero M, Waltenberger J, et al. (2003) Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 9, 936–943.

    Article  PubMed  CAS  Google Scholar 

  • Baka S, Clamp AR, et al. (2006) A review of the latest clinical compounds to inhibit VEGF in pathological angiogenesis. Expert Opin Ther Targets 10, 867–876.

    Article  PubMed  CAS  Google Scholar 

  • Bao S, Ouyang G, et al. (2004) Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5, 329–339.

    Article  PubMed  CAS  Google Scholar 

  • Bergers G, Song S, et al. (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111, 1287–1295.

    PubMed  CAS  Google Scholar 

  • Betsholtz C, Lindblom P, et al. (2005) Role of pericytes in vascular morphogenesis. Exs, 115–125.

    Google Scholar 

  • Bikfalvi A (1999) [Role of fibroblast growth factor-2 in tumor angiogenesis]. Pathol Biol (Paris) 47, 364–367.

    CAS  Google Scholar 

  • Branca MA (2005) Multi-kinase inhibitors create buzz at ASCO. Nat Biotechnol 23, 639.

    Article  PubMed  CAS  Google Scholar 

  • Calvani M, Rapisarda A, et al. (2006) Hypoxic induction of an HIF-1alpha-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells. Blood 107, 2705–2712.

    Article  PubMed  CAS  Google Scholar 

  • Cao R, Brakenhielm E, et al. (2002) Angiogenesis stimulated by PDGF-CC, a novel member in the PDGF family, involves activation of PDGFR-alphaalpha and -alphabeta receptors. Faseb J 16, 1575–1583.

    Article  PubMed  CAS  Google Scholar 

  • Cao R, Brakenhielm E, et al. (2003) Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9, 604–613.

    Article  PubMed  CAS  Google Scholar 

  • Cao Y (1998) Endogenous angiogenesis inhibitors: Angiostatin, endostatin, and other proteolytic fragments. Prog Mol Subcell Biol 20, 161–176.

    Article  PubMed  CAS  Google Scholar 

  • Cao Y (2005) Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat Rev Cancer 5, 735–743.

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Linden P, et al. (1998a) Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl Acad Sci USA 95, 14389–14394.

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Linden P, et al. (1996) In vivo angiogenic activity and hypoxia induction of heterodimers of placenta growth factor/vascular endothelial growth factor. J Clin Invest 98, 2507–2511.

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, O’Reilly M.S., et al. (1998b) Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases. J Clin Invest 101, 1055–1063.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407, 249–257.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Moons L, et al. (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7, 575–583.

    Article  PubMed  CAS  Google Scholar 

  • Casanovas O, Hicklin, DJ, et al. (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8, 299–309.

    Article  PubMed  CAS  Google Scholar 

  • Chen H, He Z, et al. (1998) Semaphorin-neuropilin interactions underlying sympathetic axon responses to class III semaphorins. Neuron 21, 1283–1290.

    Article  PubMed  CAS  Google Scholar 

  • Cheng N, Brantley DM, et al. (2002) Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. Mol Cancer Res 1, 2–11.

    Article  PubMed  CAS  Google Scholar 

  • Couper LL, Bryant SR, et al. (1997) Vascular endothelial growth factor increases the mitogenic response to fibroblast growth factor-2 in vascular smooth muscle cells in vivo via expression of fms-like tyrosine kinase-1. Circ Res 81, 932–939.

    Article  PubMed  CAS  Google Scholar 

  • Dameron KM, Volpert OV, et al. (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1582–1584.

    Article  PubMed  CAS  Google Scholar 

  • Damiano V, Caputo R, et al. (2007) TLR9 agonist acts by different mechanisms synergizing with bevacizumab in sensitive and cetuximab-resistant colon cancer xenografts. Proc Natl Acad Sci USA 104, 12468–12473.

    Article  PubMed  CAS  Google Scholar 

  • Dong D, Ko B, et al. (2005) Vascular targeting and antiangiogenesis agents induce drug resistance effector GRP78 within the tumor microenvironment. Cancer Res 65, 5785–5791.

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Grunstein J, et al. (2004) VEGF-null cells require PDGFR alpha signaling-mediated stromal fibroblast recruitment for tumorigenesis. Embo J 23, 2800–2810.

    Article  PubMed  CAS  Google Scholar 

  • Dorrell, MI, Aguilar E, et al. (2007) Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proc Natl Acad Sci USA 104, 967–972.

    Article  PubMed  CAS  Google Scholar 

  • Du R, Lu KV, et al. (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13, 206–220.

    Article  PubMed  CAS  Google Scholar 

  • Dvorak HF (2000) VPF/VEGF and the angiogenic response. Semin Perinatol 24, 75–78.

    Article  PubMed  CAS  Google Scholar 

  • Engelman, JA, Zejnullahu K, et al. (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson A, Cao R, et al. (2002) Placenta growth factor-1 antagonizes VEGF-induced angiogenesis and tumor growth by the formation of functionally inactive PlGF-1/VEGF heterodimers. Cancer Cell 1, 99–108.

    Article  PubMed  CAS  Google Scholar 

  • Faivre S, Demetri G, et al. (2007) Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov 6, 734–745.

    Article  PubMed  CAS  Google Scholar 

  • Fergelot P, Rioux-Leclercq N, et al. (2005) [Molecular pathways of tumour angiogenesis and new targeted therapeutic approaches in renal cancer]. Prog Urol 15, 1021–1029.

    PubMed  Google Scholar 

  • Ferrara N, Hillan, KJ, et al. (2005) Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 333, 328–335.

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Kerbel, RS (2005) Angiogenesis as a therapeutic target. Nature 438, 967–974.

    Article  PubMed  CAS  Google Scholar 

  • Fischer C, Jonckx B, et al. (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131, 463–475.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285, 1182–1186.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1, 27–31.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (2006) Antiangiogenesis in cancer therapy – endostatin and its mechanisms of action. Exp Cell Res 312, 594–607.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (2007) Angiogenesis: An organizing principle for drug discovery? Nat Rev Drug Discov 6, 273–286.

    Article  PubMed  CAS  Google Scholar 

  • Fukumura D, Xu L, et al. (2001) Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res 61, 6020–6024.

    PubMed  CAS  Google Scholar 

  • Goto F, Goto K, et al. (1993). Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels. Lab Invest 69, 508–517.

    PubMed  CAS  Google Scholar 

  • Grose R, Dickson C (2005) Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev 16, 179–186.

    Article  PubMed  CAS  Google Scholar 

  • Guo A, Villen J, et al. (2008) Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad Sci USA 105, 692–697.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi S, Asahara T, et al. (2005) Functional ephrin-B2 expression for promotive interaction between arterial and venous vessels in postnatal neovascularization. Circulation 111, 2210–2218.

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom M, Phng LK, et al. (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780.

    Article  PubMed  CAS  Google Scholar 

  • Hida K, Hida Y, et al. (2004) Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res 64, 8249–8255.

    Article  PubMed  CAS  Google Scholar 

  • Holash J, Maisonpierre PC, et al. (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998.

    Article  PubMed  CAS  Google Scholar 

  • Hori K, Saito S, et al. (2003) Differential relationship between changes in tumour size and microcirculatory functions induced by therapy with an antivascular drug and with cytotoxic drugs. implications for the evaluation of therapeutic efficacy of AC7700 (AVE8062). Eur J Cancer 39, 1957–1966.

    Article  PubMed  CAS  Google Scholar 

  • Houghton J, Stoicov C, et al. (2004) Gastric cancer originating from bone marrow-derived cells. Science 306, 1568–1571.

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz H, Fehrenbacher L, et al. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350, 2335–2342.

    Article  PubMed  CAS  Google Scholar 

  • Imhof BA, Aurrand-Lions M (2006) Angiogenesis and inflammation face off. Nat Med 12, 171–172.

    Article  PubMed  CAS  Google Scholar 

  • Indraccolo S, Stievano L, et al. (2006) Interruption of tumor dormancy by a transient angiogenic burst within the tumor microenvironment. Proc Natl Acad Sci USA 103, 4216–4221.

    Article  PubMed  CAS  Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science 307, 58–62.

    Article  PubMed  CAS  Google Scholar 

  • Jin, ZG, Ueba H, et al. (2003) Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ Res 93, 354–363.

    Article  PubMed  CAS  Google Scholar 

  • Kano MR, Morishita Y, et al. (2005) VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling. J Cell Sci 118, 3759–3768.

    Article  PubMed  CAS  Google Scholar 

  • Kerbel RS (2006) Antiangiogenic therapy: A universal chemosensitization strategy for cancer? Science 312, 1171–1175.

    Article  PubMed  CAS  Google Scholar 

  • Kumar-Singh S, Weyler J, et al. (1999) Angiogenic cytokines in mesothelioma: A study of VEGF, FGF-1 and -2, and TGF beta expression. J Pathol 189, 72–78.

    Article  PubMed  CAS  Google Scholar 

  • Li JL, Harris AL (2007) The potential of new tumor endothelium-specific markers for the development of antivascular therapy. Cancer Cell 11, 478–481.

    Article  PubMed  CAS  Google Scholar 

  • Li JL, Sainson RC, et al. (2007) Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res 67, 11244–11253.

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Zhang F, et al. (2008) VEGF-B inhibits apoptosis via VEGFR-1-mediated suppression of the expression of BH3-only protein genes in mice and rats. J Clin Invest 118, 913–923.

    Article  PubMed  CAS  Google Scholar 

  • Liao D, Johnson RS (2007) Hypoxia: A key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26, 281–290.

    Article  PubMed  CAS  Google Scholar 

  • Lind MH, Rozell B, et al. (2004) Tumor necrosis factor receptor 1-mediated signaling is required for skin cancer development induced by NF-kappaB inhibition. Proc Natl Acad Sci USA 101, 4972–4977.

    Article  PubMed  CAS  Google Scholar 

  • Lyden D, Hattori K, et al. (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7, 1194–1201.

    Article  PubMed  CAS  Google Scholar 

  • Maisonpierre PC, Suri C, et al. (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60.

    Article  PubMed  CAS  Google Scholar 

  • Makino Y, Cao R, et al. (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414, 550–554.

    Article  PubMed  CAS  Google Scholar 

  • Mancuso MR, Davis R, et al. (2006) Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest 116, 2610–2621.

    Article  PubMed  CAS  Google Scholar 

  • McCarty MF, Somcio RJ, et al. (2007) Overexpression of PDGF-BB decreases colorectal and pancreatic cancer growth by increasing tumor pericyte content. J Clin Invest 117, 2114–2122.

    Article  PubMed  CAS  Google Scholar 

  • Migdal M, Huppertz B, et al. (1998) Neuropilin-1 is a placenta growth factor-2 receptor. J Biol Chem 273, 22272–22278.

    Article  PubMed  CAS  Google Scholar 

  • Mizukami Y, Jo WS, et al. (2005) Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med 11, 992–997.

    PubMed  CAS  Google Scholar 

  • Naumov GN, Bender E, (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98, 316–325.

    Article  PubMed  Google Scholar 

  • Neagoe PE, Lemieux C, et al. (2005) Vascular endothelial growth factor (VEGF)-A165-induced prostacyclin synthesis requires the activation of VEGF receptor-1 and -2 heterodimer. J Biol Chem 280, 9904–9912.

    Article  PubMed  CAS  Google Scholar 

  • Neufeld G, Cohen T, et al. (2002) The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc Med 12, 13–19.

    Article  PubMed  CAS  Google Scholar 

  • Nissen LJ, Cao R, et al. (2007) Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest 117, 2766–2777.

    Article  PubMed  CAS  Google Scholar 

  • Noguera-Troise I, Daly C, et al. (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444, 1032–1037.

    Article  PubMed  CAS  Google Scholar 

  • Nyberg P, Xie L, et al. (2005) Endogenous inhibitors of angiogenesis. Cancer Res 65, 3967–3979.

    Article  PubMed  CAS  Google Scholar 

  • Pages G, Pouyssegur J (2005) Transcriptional regulation of the Vascular Endothelial Growth Factor gene – a concert of activating factors. Cardiovasc Res 65, 564–573.

    Article  PubMed  CAS  Google Scholar 

  • Pan Q, Chanthery Y, et al. (2007) Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell 11, 53–67.

    Article  PubMed  CAS  Google Scholar 

  • Park JE, Chen HH, et al. (1994) Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 269, 25646–25654.

    PubMed  CAS  Google Scholar 

  • Pietras K, Sjoblom T, et al. (2003) PDGF receptors as cancer drug targets. Cancer Cell 3, 439–443.

    Article  PubMed  CAS  Google Scholar 

  • Pore N, Liu S, et al. (2003) PTEN mutation and epidermal growth factor receptor activation regulate vascular endothelial growth factor (VEGF) mRNA expression in human glioblastoma cells by transactivating the proximal VEGF promoter. Cancer Res 63, 236–241.

    PubMed  CAS  Google Scholar 

  • Pule MA, Gullmann C, et al. (2002) Increased angiogenesis in bone marrow of children with acute lymphoblastic leukaemia has no prognostic significance. Br J Haematol 118, 991–998.

    Article  PubMed  Google Scholar 

  • Relf M, LeJeune S, et al. (1997) Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 57, 963–969.

    PubMed  CAS  Google Scholar 

  • Rich JN, Rasheed BK, et al. (2004) EGFR mutations and sensitivity to gefitinib. N Engl J Med 351, 1260–1261; author reply 1260–1261.

    Article  PubMed  CAS  Google Scholar 

  • Richardson TP, Peters MC, et al. (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19, 1029–1034.

    Article  PubMed  CAS  Google Scholar 

  • Ridgway J, Zhang G, et al. (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444, 1083–1087.

    Article  PubMed  CAS  Google Scholar 

  • Sainson RC, Harris AL (2007) Anti-Dll4 therapy: Can we block tumour growth by increasing angiogenesis? Trends Mol Med 13, 389–395.

    Article  PubMed  CAS  Google Scholar 

  • Schomber T, Kopfstein L, et al. (2007) Placental growth factor-1 attenuates vascular endothelial growth factor-A-dependent tumor angiogenesis during beta cell carcinogenesis. Cancer Res 67, 10840–10848.

    Article  PubMed  CAS  Google Scholar 

  • Sennino B, Falcon BL, et al. (2007) Sequential loss of tumor vessel pericytes and endothelial cells after inhibition of platelet-derived growth factor B by selective aptamer AX102. Cancer Res 67, 7358–7367.

    Article  PubMed  CAS  Google Scholar 

  • Shaked Y, Bertolini F, et al. (2005) Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 7, 101–111.

    PubMed  CAS  Google Scholar 

  • Shaked Y, Ciarrocchi A, et al. (2006) Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313, 1785–1787.

    Article  PubMed  CAS  Google Scholar 

  • Shojaei F, Wu X, et al. (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 25, 911–920.

    Article  PubMed  CAS  Google Scholar 

  • Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445, 781–784.

    Article  PubMed  CAS  Google Scholar 

  • Soker S, Takashima S, et al. (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745.

    Article  PubMed  CAS  Google Scholar 

  • Soucek L, Lawlor ER, et al. (2007) Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 13, 1211–1218.

    Article  PubMed  CAS  Google Scholar 

  • Thurston G, Suri C, et al. (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286, 2511–2514.

    Article  PubMed  CAS  Google Scholar 

  • Usui R, Shibuya M, et al. (2007) Ligand-independent activation of vascular endothelial growth factor receptor 1 by low-density lipoprotein. EMBO Rep 8, 1155–1161.

    Article  PubMed  CAS  Google Scholar 

  • Watnick, RS, Cheng YN, et al. (2003) Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 3, 219–231.

    Article  PubMed  CAS  Google Scholar 

  • Volpert OV, Alani RM (2003) Wiring the angiogenic switch: Ras, Myc, and Thrombospondin-1. Cancer Cell 3, 199–200.

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Cochran DM, et al. (2006) Placenta growth factor overexpression inhibits tumor growth, angiogenesis, and metastasis by depleting vascular endothelial growth factor homodimers in orthotopic mouse models. Cancer Res 66, 3971–3977.

    Article  PubMed  CAS  Google Scholar 

  • Yancopoulos GD, Klagsbrun M, et al. (1998) Vasculogenesis, angiogenesis, and growth factors: ephrins enter the fray at the border. Cell 93, 661–664.

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Bohlen P, et al. (2002) Clinical development of angiogenesis inhibitors to vascular endothelial growth factor and its receptors as cancer therapeutics. Curr Cancer Drug Targets 2, 135–156.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I regret that, owing to the space limitations, I am unable to cover all aspects of the large amount of basic research on this topic and to refer to all primary literatures and in many instances I have cited reviews. The author´s laboratory is supported by research grants from the Swedish Research Council, the Swedish Heart and Lung Foundation, the Swedish Cancer Foundation, the Karolinska Institute fund, the Karolinska Gender foundation, the Söderberg Foundation, European Union Integrated Projects of Angiotargeting Contract 504743 (to Y.C.) and European VascuPlug Contract STRP 013811 (to Y.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihai Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cao, Y. (2010). Cancer Therapy by Targeting Vascular Endothelial Cell Growth Factor- and Non-Vascular Endothelial Cell Growth Factor-Mediated Angiogenesis. In: Slevin, M. (eds) Therapeutic Angiogenesis for Vascular Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9495-7_5

Download citation

Publish with us

Policies and ethics