Skip to main content

Ferrar Group: Dolerite Sills and the Dufek Intrusion

  • Chapter
  • First Online:
The Transantarctic Mountains
  • 1319 Accesses

Abstract

During Robert Scott’s first expedition to Antarctica from 1901–1904, a group of men led by Albert Armitage and including the geologist Hartley Ferrar crossed McMurdo Sound and explored the mountains of Victoria Land. They discovered the Ferrar Glacier and ascended it to the edge of the polar plateau (Section 1.4.1). During this trip, Hartley Ferrar photographed diabase sills that intruded the Beacon sandstones and later described the geology of the region (Ferrar 1907). The diabase samples he collected plus others that were collected during Shackleton’s first expedition from 1907–1909 were later described by Prior (1907) and Benson (1916), respectively. Several other geologists worked in the ice-free valleys during Scott’s “Terra Nova” expedition, but only the report by Smith (1924) provided information about the diabase sills. That was pretty much the extent of the information on the diabase sills of southern Victoria Land until the IGY (1957/58) when several geologists from New Zealand and the USA began to map the geology of the Transantarctic Mountains. British geologists prefer the term “dolerite” for rocks which American geologists call “diabase”. We will use the British term out of respect for the New Zealand geologists who continue to work in Antarctica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel KD, Himmelberg GR, Ford AB (1979) Petrologic studies of the Dufek intrusion: Plagioclase variation. Antarctic J US 14(5):6–8

    Google Scholar 

  • Aughenbaugh NB (1961) Preliminary report on the geology of the Dufek Massif. IGY World Data Center, A. Glaciol Glac Rept 4:155–193

    Google Scholar 

  • Barrett PJ, Elliot DH (1973) Reconnaissance geologic map of the Buckley Island Quadrangle, Transantarctic Mountains, Antarctica. Antarctic geologic map A-3. US Geological Survey, Washington, DC

    Google Scholar 

  • Barrett PJ, Elliot DH, Lindsay JF (1986) The Beacon Supergroup (Devonian-Triassic) and Ferrar Group (Jurassic) in the Beardmore Glacier area, Antarctica. In: Turner MD, Splettstoesser JF (eds) Geology of the Central Transantarctic Mountains. Antarctic Research Series, vol. 36. American Geophysical Union, Washington, DC, pp 339–428

    Google Scholar 

  • Behrendt JC, Henderson JR, Meister L, Rambo WL (1974) Geophysical investigations of the Pensacola Mountains and adjacent glacierized areas of Antarctica. US Geol Surv Prof. Paper 844:1–28

    Google Scholar 

  • Behrendt JC, Drewry DJ, Jankowski E, England AW (1979) Revision of the known area of the Dufek intrusion. Antarctic J US 14:6

    Google Scholar 

  • Behrendt JC, Drewry DJ, Jankowski E, Grim MS (1980) Aeromagnetic and radio echo ice-sounding measurements show much greater area of the Dufek intrusion, Antarctica. Science 209:1014–1017

    Google Scholar 

  • Behrendt JC, Drewry DJ, Jankowski E, Grim MS (1981) Aeromagnetic and radio echo ice-sounding measurements over the Dufek intrusion, Antarctica. J Geophys Res 86:3014–3020

    Google Scholar 

  • Benson WN (1916) Report on the petrology of the dolerites collected by the British Antarctic expedition, 1907–1909. British Antarctic Exped., 1907–09. Scientific Investigations, Rept. 2 (Geology), Pt. 9:153–160

    Google Scholar 

  • Bhattacharji S, Smith C (1964) Flowage differentiation. Science 145:150–153

    Google Scholar 

  • Bird DK, Rogers RD, Manning CE (1986) Mineralized fracture systems of the Skaergaard intrusion. Medd Grönland Geosci 16:1–68

    Google Scholar 

  • Bird DK, Manning CE, Rose NM (1988) Hydrothermal alteration of Tertiary layered gabbros, East Greenland. American J Sci 288:405–407

    Google Scholar 

  • Bottinga Y, Javoy M (1975) Oxygen isotope partitioning among the minerals of igneousand metamorphic rocks. Rev Geophys Space Phys 13:401–418

    Google Scholar 

  • Brewer TS, Hergt JM, Hawkesworth CJ, Rex D, Storey BC (1992) Coats Land dolerites and the generation of Antarctic continental flood basalts. In: Storey BC, Alabaster T, Pankhurst RJ (eds) Magmatism and the causes of continental break-up. Geol Soc London, Spec Pub 68:185–208

    Google Scholar 

  • Brewer TS, Rex D, Guise PG, Hawkesworth CJ (1996) Geochronology of Mesozoic tholeiitic magmatism in Antarctica: Implications for the development of the failed Weddell-Sea rift systems. In: StoreyBC et al. (eds) Weddell Sea tectonics and Gondwana break-up. Geol Soc London, Spec Paper 108:45–61

    Google Scholar 

  • Brotzu P, Capaldi G, Melluso L Orsi G (1988) Jurassic Ferrar Dolerites and Kirkpatrick Basalts in northern Victoria Land (Antarctica): Stratigraphy, geochronology, and petrology. Mem Soc Geol Italiana 43:97–116

    Google Scholar 

  • Cartwright J, Möller-Hansen D (2006) Magma transport through the crust via interconnected sill complexes. Geology, 34(11):929–932

    Google Scholar 

  • Cawthorn RG (1996) Layered intrusions. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen, and carbon isotope fractionation factors applicable to geologic systems. In: Valley JW, Cole DR (eds) Rev Mineral Geochem 43:1–81

    Google Scholar 

  • Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: Applications to geothermometry. Geochim Cosmochim Acta 53:2985–2995

    Google Scholar 

  • Compston W, McDougall I, Heier KS (1968) Geochemical comparison of the Mesozoic basaltic rocks of Antarctica, South Africa, South America, and Tasmania. Geochim Cosmochim Acta 32:129–149

    Google Scholar 

  • Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. Allen & Unwin, London

    Google Scholar 

  • Craddock C (ed) (1969) Geologic map of Antarctica. Antarctic map Folio Series, Folio 12. American Geographical Society, New York

    Google Scholar 

  • Drinkwater JL, Ford AB, Czamanske GK (1985) Study of sulfide mineral distribution in the Dufek intrusion. Antarctic J US 20(5):50–51

    Google Scholar 

  • Drinkwater JL, Ford AB, Czamanske GK (1986) Apatites of the Dufek Intrusion: A preliminary study. Antarctic J US 21(5):66–69

    Google Scholar 

  • Elliot DH, Fleming TH (2004) Occurrence and dispersal of magmas in the Jurassic Ferrar Large Igneous Province, Antarctica. Gondwana Res 7:225–239

    Google Scholar 

  • Elliot DH, Fleming TH, Kyle PR, Foland KA (1999) Long-distance transport of magmas in the Jurassic Large Igneous Province, Antarctica. Earth Planet Sci Lett 167:89–104

    Google Scholar 

  • Encarnación J, Fleming TH, Elliot DH (1996) Synchronous emplacement of Ferrar and Karoo dolerites and the early break up of Gondwana. Geology 24:535–538

    Google Scholar 

  • England AW, Nelson WH (1977) Geophysical studies of the Dufek intrusion, Pensacola Mountains, Antarctica, 1976–1977. Antarctic J US 12(4):93–94

    Google Scholar 

  • England AW, Cooke JE, Hodge SM, Watts RD (1979) Geophysical investigations of Dufek intrusion, Pensacola Mountains. Antarctic J. US 14:4–5

    Google Scholar 

  • Erlank AJ, Hofmeyr PK (1966) K/Rb and K/Cs ratios in Karroo dolerites from South Africa. J Geophys Res 71:5439

    Google Scholar 

  • Erlank AJ, Hofmeyr PK (1968) K/Rb ratios of Mesozoic and tholeiites from Antarctica, Brazil, and India. Earth Planet Sci Lett 4:33–38

    Google Scholar 

  • Faure G (1981) Strontium isotope composition of volcanic rocks: Evidence for contamination of the Kirkpatrick Basalt, Antarctica. In: O’Connell RJ, Fyfe WS (eds) Evolution of the earth. Geodynamics Series, vol. 5. American Geophysical Union, Washington, DC, pp 75–81

    Google Scholar 

  • Faure G (1998) Principles and applications of geochemistry, 2nd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Faure G (2001) The origin of igneous rocks: The isotopic evidence. Springer, Heidelberg, Germany

    Google Scholar 

  • Faure G, Mensing TM (2005) Isotopes: Principles and applications, 3rd edn. Wiley, Hoboken, NJ

    Google Scholar 

  • Faure G, Hill RL, Jones LM, Elliot DH (1972) Isotope composition of strontium and silica content of Mesozoic basalt and dolerite from Antarctica. In: Adie RJ (ed) Antarctic geology and geophysics. Universitetsforlaget, Oslo, Norway, pp 617–624

    Google Scholar 

  • Faure G, Bowman JR, Elliot DH, Jones LM (1974) Strontium isotope composition and petrogenesis of the Kirkpatrick Basalt, Queen Alexandra Range, Antarctica. Contrib Mineral Petrol 58(3):153–169

    Google Scholar 

  • Faure G, Mensing TM, Jones LM, Hoefs J, Kibler EM (1991) Isotopic and geochemical studies of Ferrar Dolerite sills in the Transantarctic Mountains. In: Ulbrich H, Rocha Campos AC (eds) Gondwana Seven Proceedings. Instituto Geociencias, Universidade de São Paulo, São Paulo, Brazil, pp 669–683

    Google Scholar 

  • Ferrar HT (1907) Report on the field geology of the region explored during the “Discovery” Antarctic expedition, 1901–05. National Antarctic Exped., vol. 1 (Geology):1–100. London

    Google Scholar 

  • Ferris J Johnson A, Storey B (1998) Form and extent of the Dufek intrusion, Antarctica, from newly compiled aeromagnetic data. Earth Planet Sci Lett 154:185–202

    Google Scholar 

  • Fleming TH, Foland KA, Elliot DH (1995) Isotopic and chemical constraints on the crustal evolution and source signature of Ferrar magmas, north Victoria Land, Antarctica. Contrib Mineral Petrol 121:217–236

    Google Scholar 

  • Fleming TH, Elliot DE, Heimann A, Foland KA (1997) 40Ar/39Ar geochronology of Ferrar Dolerite sills from the Transantarctic Mountains, Antarctica: Implications for the age and origin of the Ferrar magmatic province. Geol Soc Amer Bull 109:533–546

    Google Scholar 

  • Ford AB (1969) Chemical trends in the Dufek intrusion, Pensacola Mountains. Antarctic J US 4(5):202–203

    Google Scholar 

  • Ford AB (1970) Development of the layered series and capping granophyre of the Dufek intrusion of Antarctica. In: Visser DJL, von Gruenewaldt G (eds) Symposium on the Bushveld igneous complex and other layered intrusion. Geol Soc South Africa, Spec Pub 1:492–510

    Google Scholar 

  • Ford AB (1974) Basalt dikes of the Cordiner Peaks: Satellite bodies of the Dufek intrusion? Antarctic J US 9(4):149–152

    Google Scholar 

  • Ford AB (1976) The stratigraphy of the Dufek intrusion, Antarctica. US Geol Surv Bull 1405D:1–36

    Google Scholar 

  • Ford AB (1983a) The Dufek Intrusion of Antarctica and a survey of its minor metals related to possible resources. Abstract US Geological Survey Polar Research Symposium, Circular 911. Denver, CO, pp 7–10

    Google Scholar 

  • Ford AB (1983b) The Dufek intrusion of Antarctica and a survey of its minor metals and possible resources. In: Behrendt JC (eds) Petroleum and mineral resources of Antarctica. US Geological Survey, Circular 909. Denver, CO, pp 51–75

    Google Scholar 

  • Ford AB (1990) The Dufek intrusion of Antarctica. In: Splettstoesser JF, Dreschoff GAM (eds) Mineral resources of Antarctica. Antarctic Research Series, vol. 51. American Geophysical Union, Washington, DC, pp 15–32

    Google Scholar 

  • Ford AB, Boyd WW Jr (1968) The Dufek intrusion, a major stratiform gabbroic body in the Pensacola Mountains, Antarctica. 23rd International Geological Congress, Proceedings, vol. 2. Prague, pp 213–228

    Google Scholar 

  • Ford AB, Himmelberg GR (1991) Geology and crystallization of the Dufek intrusion. In: Tingey RJ (eds) Geology of Antarctica. Oxford University Press, Oxford, UK

    Google Scholar 

  • Ford AB, Kistler RW (1980) K-Ar age, composition and origin of Mesozoic mafic rocks related to the Ferrar Group, Pensacola Mountains, Antarctica. New Zealand J Geol Geophys 23:371–390

    Google Scholar 

  • Ford AB, Nelson SW (1972) Density of the stratiform Dufek intrusion, Pensacola Mountains, Antarctica. Antarctic J US 7(5):147–149

    Google Scholar 

  • Ford AB, Carlson C, Czamanske GK, Nelson WH, Nutt CJ (1977) Geological studies of the Dufek intrusion, Pensacola Mountains, 1976–1977 Antarctic J US 12(4):90–92

    Google Scholar 

  • Ford AB, Mays RE, Haffty J, Fabbi BP (1983) Reconnaissance of minor metal abundances and possible resources of the Dufek Intrusion, Pensacola Mountains. In: Oliver RL, James PR, Jago JB (eds) Antarctic earth science. Australian Academy of Science, Canberra, A.C.T., pp 433–436

    Google Scholar 

  • Ford AB, Kistler RW, White LD (1986) Strontium and oxygen isotope study of the Dufek Intrusion. Antarctic J US 21:63–66

    Google Scholar 

  • Grindley WG (1973) The geology of the Queen Alexandra Range, Beardmore Glacier, Ross Dependency, Antarctica: With notes on the correlation of Gondwana sequences. New Zealand J Geol Geophys 6(3):307–347

    Google Scholar 

  • Grindley GW, Laird MG (1969) Geology of the Shackleton Coast. In: Craddock C (ed) Geologic map of Antarctica, Folio 12, Sheet 15. American Geographical Society, New York

    Google Scholar 

  • Grindley GW, Warren G (1964) Stratigraphic nomenclature and correlation in the western Ross Sea region. In: Adie RJ (ed) Antarctic geology. North-Holland, Amsterdam, The Netherlands, pp 314–333

    Google Scholar 

  • Gunn BM (1962) Differentiation in Ferrar Dolerites, Antarctica. New Zealand J Geol Geophys 5(5):820–863

    Google Scholar 

  • Gunn BM (1963) Layered intrusions in the Ferrar Dolerites, Antarctica. Mineral Soc Amer, Spec Paper 1:124–133

    Google Scholar 

  • Gunn BM (1965) K/Rb and K/Ba ratios in Antarctic and New Zealand tholeiites and alkali basalts. J Geophys Res 70(24):6241–6247

    Google Scholar 

  • Gunn BM (1966) Modal and element variation in Antarctic tholeiites. Geochim Cosmochim Acta 30(9):881–920

    Google Scholar 

  • Gunn BM, Warren G (1962) Geology of Victoria Land between the Mawson and Mulock glaciers, Antarctica. New Zealand Geol Surv Bull 71:1–157

    Google Scholar 

  • Haensel JM Jr, Himmelberg GR, Ford AB (1986) Plagioclase compositional variations in anorthosites of the lower part of the Dufek intrusion. Antarctic J US 21(5):61–63

    Google Scholar 

  • Hamilton WB (1965) Diabase sheets of the Taylor Glacier region, Victoria Land, Antarctica. US Geol Surv Prof. Paper 456-B:1–71

    Google Scholar 

  • Harrington HJ (1958) Nomenclature of rock units in the Ross Sea region, Antarctica. Nature 182:209

    Google Scholar 

  • Heier KS, Rogers JJW (1963) Radiometric determination of thorium, uranium, and potassium in basalts and in two magmatic differentiation series. Geochim Cosmochim Acta 27:137–154

    Google Scholar 

  • Heier KS, McDougall I, Adams JAS (1964) Thorium, uranium, and potassium concentrations in Hawaiian lavas. Nature 201:254–256

    Google Scholar 

  • Heier KS, Compston W, McDougall I (1965) Thorium and uranium concentrations, and the isotopic compositions of strontium in the differentiated Tasmanian dolerites. Geochim Cosmochim Acta 29:643–659

    Google Scholar 

  • Heimann A, Fleming TH, Elliot DH, Foland KA (1994) A short interval of Jurassic continental flood basalt volcanism in Antarctica as demonstrated by 40Ar/39Ar geochronology. Earth Planet Sci Lett 121:19–41

    Google Scholar 

  • Hergt JM (1987) The origin and evolution of the Tasmanian Dolerites. PhD dissertation. The Australian National University, Canberra, Australia

    Google Scholar 

  • Hergt JM, Chappell BW, McCulloch MT, McDougall I, Chivas AR (1989a) Geochemical and isotopic constraints on the origin of the Jurassic dolerites of Tasmania. J Petrol 30(4):841–883

    Google Scholar 

  • Hergt JJ, Chappell BW, Faure G, Mensing TM (1989b) The geochemistry of Jurassic dolerites from Portal Peak, Antarctica. Contrib Mineral Petrol 102:298–305

    Google Scholar 

  • Hergt JM, Peate DW, Hawkesworth CJ (1991) The petrogenesis of Mesozoic Gondwana low-Ti flood basalts. Earth Planet Sci Lett 105:134–148

    Google Scholar 

  • Himmelberg GR, Ford AB (1973) Pyroxene compositional trends in the Dufek intrusion, Pensacola Mountains. Antarctic J US 8(5):260–263

    Google Scholar 

  • Himmelberg GR, Ford AB (1975) Petrologic studies of the Dufek intrusion, Pensacola Mountains: Iron-titanium oxides. Antarctic J US 10(5):241–244

    Google Scholar 

  • Himmelberg GR, Ford AB (1976) Pyroxenes of the Dufek intrusion, Antarctica. J Petrol 17(2):219–243

    Google Scholar 

  • Himmelberg GR, Ford AB (1977) Iron-titanium oxides of the Dufek intrusion. Amer Mineral 62:623–633

    Google Scholar 

  • Hoefs J (1997) Stable isotope geochemistry, 4th edn. Springer, Heidelberg, Germany

    Google Scholar 

  • Hoffman J, Nairn AEM, Peterson DN (1984) The paleomagnetic investigation of flows and sills from the Queen Alexandra Range, Antarctica. In: Turner MD, Splettstoesser JF (eds) Geology of the Central Transantarctic Mountains. Antarctic Research Series, vol. 36, paper 4

    Google Scholar 

  • IUGS (2002) International stratigraphic chart. International Commission of Stratigraphy

    Google Scholar 

  • Jones LM, Walker RL, Hall BA, Borns HW Jr (1973) Origin of the Jurassic dolerite and basalts of southern Victoria Land. Antarctic J US 8(5):268–270

    Google Scholar 

  • Kibler EM (1981) Petrogenesis of two Ferrar Dolerite sills, Roadend Nunatak, Transantarctic Mountains, Antarctica. MSc thesis, The Ohio State University, Columbus, OH

    Google Scholar 

  • Kruger FJ, Marsh JS (1982) Significance of 87Sr/86Sr ratios in the Merensky cyclic unit of the Bushveld complex. Nature 298:53–55

    Google Scholar 

  • Kulp JL (1961) Geologic time scale. Science 133:1105–1114

    Google Scholar 

  • Kyle PR (1977) Petrogenesis of the Ferrar rocks. Antarctic J US 12(4):108–110

    Google Scholar 

  • Kyle PR (1980) Development of heterogeneities in the subcontinental mantle: Evidence from the Ferrar Group, Antarctica. Contrib Mineral Petrol 73:89–104

    Google Scholar 

  • Kyle PR, Elliot DH, Sutter JF (1981) Jurassic Ferrar Supergroup tholeiites from the Transantarctic Mountains, Antarctica, and their relationship to the initial fragmentation of Gondwana. In: Cresswell VM, Vella P (eds) Gondwana. Balkema, Rotterdam, The Netherlands, pp 283–287

    Google Scholar 

  • Kyle PR, Pankhurst RJ, Bowman JR (1983) Isotopic and chemical variations in Kirkpatrick Basalt Group rocks from southern Victoria Land. In: Oliver RL, James PR, Jago JB (eds) Antarctic earth science. Australian Academy of Science, Canberra, A.C.T., pp 234–237

    Google Scholar 

  • Leal LG (1980) Particle motions in a viscous fluid. Ann Rev Fluid Mechanics 12:435–476

    Google Scholar 

  • Lindsay JF, Gunner J, Barrett PJ (1973) Reconnaissance geologic map of the Mount Elizabeth and Mount Kathleen Quadrangles, Transantarctic Mountains, Antarctica. Antarctic geologic map A-2. US Geological Survey, Washington, DC

    Google Scholar 

  • Marsh BD (1996a) Solidification fronts and magmatic evolution. Mineral Mag 60:5–40

    Google Scholar 

  • Marsh BD (1996b) Sill sequence as piecemeal layered intrusions and links to volcanism: Evidence from the Ferrar dolerites of Antarctica. EOS, Trans Amer Geophys Union 77:S292

    Google Scholar 

  • Marsh BD, Philipp JR (1996) Three-dimensional magmatic filling of Basement sill revealed by unusual crystal concentrations. Antarctic J US 31(2):39–40

    Google Scholar 

  • Marsh BD, Zieg MJ (1997) The Dais layered intrusion: A new discovery in the Basement sill of the McMurdo dry valleys. Antarctic J US 32(5):18–20

    Google Scholar 

  • McDougall I (1961) Determination of the age of a basic igneous intrusion by the potassium argon method. Nature 190:1184–1186

    Google Scholar 

  • McDougall I (1962) Differentiation of the Tasmanian Dolerites: Red Hill Dolerite-Granophyre association. Geol Soc Amer Bull 73:279–316

    Google Scholar 

  • McDougall I (1963) Potassium-argon age measurements on dolerites from Antarctica and South Africa. J Geophys Res 68(5):1535–1545

    Google Scholar 

  • McKelvey BC, Webb PN (1962) Geology of Wright Valley. Pt. 3 of Geological investigations in southern Victoria Land, Antarctica. New Zealand J Geol Geophys 5(3):225–251

    Google Scholar 

  • Minor D, Mukasa S (1997) Zircon U-Pb and hornblende 40Ar-39Ar ages for the Dufek layered mafic intrusion, Antarctica: Implications for the age of the Ferrar large igneous province. Geochim Cosmochim Acta 61:2497–2504

    Google Scholar 

  • Morrison AD, Reay A (1995) Geochemistry of Ferrar Dolerite sills and dykes at Terra Cotta Mountain, south Victoria Land, Antarctica. Antarctic Sci 7(1):73–85

    Google Scholar 

  • Prior GT (1907) Report on the rock specimens collected during the “Discovery” Antarctic Expedition, 1901–1904. Nat Antarct Exped, Nat History, vol. 1, Geology:101–140, London

    Google Scholar 

  • Renne PR, Deino AL, Walter RC, Turrin BD, Swisher CC III, Becker TA, Curtis GH, Sharp WD, Jasouni AR (1994) Intercalibration of astronomical and radioisotope time. Geology 22:783–786

    Google Scholar 

  • Renne PR, Swisher CC, Deino AL, Karner DB, Owen TL,. DePaolo DJ (1998) Intercalibration of standards, absolute ages, and uncertainties in 40Ar/39Ar dating. Chem Geol 154:117–152

    Google Scholar 

  • Rhodes RC, Bornhorst TJ (1976) Petrologic provinces in Jurassic tholeiites of Gondwanaland. Geologische Rundschau 65:930–937

    Google Scholar 

  • Rowley PD, Ford AB, Williams PL, Pride DE (1983) Metallogenic provinces of Antarctica. In: Oliver RL, James PR, Jago JB (eds) Antarctic earth science. Australian Acad. Sci., Canberra, A.C.T., pp 414–419

    Google Scholar 

  • Schmidt DT, Ford AB (1969) Geology of the Pensacola and Thiel mountains. In: Craddock C (ed) Geologic map of Antarctica, Antarctic Folio Series, Folio 12, Sheet 5. American Geographical Society, New York

    Google Scholar 

  • Simkin T (1967) Flow differentiation in the picritic sills of North Skye. In, P.J. Wyllie, ed., Ultramafic and Related Rocks. Wiley, New York

    Google Scholar 

  • Smith WC (1924) The plutonic and hypabyssal rocks of south Victoria Land. British Antarctic “Terra Nova” Exped. 1910–1913. Nat Hist Rep, Geology 1(6):167–227

    Google Scholar 

  • Storey BC, Kyle PR (1997) An active mantle mechanism for Gondwana break-up. South African J Geol 100:283–290

    Google Scholar 

  • Upton BGJ, Wadsworth WJ (1967) A complex basalt-mugearite sill in Piton des Neiges volcano, Reunion. Amer. Mineral. 52:1475–1492

    Google Scholar 

  • Vavra CL (1982) Provenance and alteration of the Triassic Fremouw and Falla formations, central Transantarctic Mountains, Antarctica. PhD dissertation, Department of Geology and Mineralogy, The Ohio State University, Columbus, OH

    Google Scholar 

  • Vavra CL, Stanley KO, Collinson JW (1981) Provenance and alteration of the Triassic Fremouw Formation, Central Transantarctic Mountains. In: Cresswell MM, Vella P (eds) Gondwana Five. A.A. Balkema, Rotterdam, The Netherlands, pp 149–153

    Google Scholar 

  • Wager LR, Deer WA (1939) The petrology of the Skaergaard Intrusion, Kangerdlugssuaq East Greenland. Medd om Grönland 105:1–352

    Google Scholar 

  • Walker F (1953) The pegmatitic differentiates of basic sheets. Amer J Sci 251:41–60

    Google Scholar 

  • Walker PT (1961) Study of some rocks and minerals from the Dufek Massif, Antarctica. IGY World Data Center, A. Glaciol, Glac Rep 4:195–213

    Google Scholar 

  • Wilson M (1989) Igneous petrogenesis. Unwin Hyman, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunter Faure .

Appendices

Appendices

1.1 Mineralogical Types of Ferrar Dolerite Sills in Southern Victoria Land (Gunn 1966)

Table 8

1.2 Chemical Analyses of Dolerite Sills on Roadend Nunatak, Southern Victoria Land

Table 9

1.3 Rb-Sr Systematics of the Dolerite Sills on Roadend Nunatak at the Confluence of the Touchdown and Darwin Glaciers, Southern Victoria Land

Table 10

1.4 Major-Element Analyses of Whole-Rock Samples, Ferrar Dolerite Sills, Mt. Achernar, Queen Alexandra Range, in Percent by Weight

Table 11

1.5 Rb-Sr Systematics of the Sills of Ferrar Dolerite on Mt. Achernar, Queen Alexandra Range ( 84°12′S, 160°56′E)

Table 12

1.6 δ18O Values of Plagioclase and Pyroxene in Dolerite Samples of Sill # 2 on Mt. Achernar and Estimates of the Isotope Equilibration Temperature

Table 13

The geothermometry equation of Bottinga and Javoy (1975) is:

$$ {\Delta }_{2}^{1}=\frac{(1.70-1.04b){10}^{6}}{{T}^{2}}$$
(13.4)

where β is the mole fraction of anorthite in the plagioclase and A = (1.70 − 1.04 β). Assuming that the plagioclase in Sill # 2 on Mt. Achernar is labradorite defined as An50 to An70, we set β = 0.6 which yields A = 1.076. Substituting this value into Eq. 13.4 and setting \( {\Delta }_{2}^{1}\) = 0.98 (15 m above base) we obtain:

$$ 0.98=\frac{1.076\times {10}^{6}}{{T}^{2}}$$
$$ T={\left(\frac{1.076\times {10}^{6}}{0.98}\right)}^{1/2}=1047.8K$$

T = 1047.8 – 273.15 = 774.6 ∼ 775°C

The resulting temperature estimates in column (1) range from 613°C to 1126°C. Omitting the lowest and the highest values yields a mean of 872 ± 112°C (1σ)

The oxygen-isotope fractionation factors reported by Chiba et al. (1989) for feldspar-pyroxene are: Albite-Diopside = 1.81, Anorthite-Diopside = 0.76. For labradorite (An = 60%, Ab = 40%) the numerical value of A is: A = 0.6 × 0.76 + 0.4 × 1.81 = 1.18 and Eq. 13.4takes the form:

$$ {\Delta }_{2}^{1}=\frac{1.18\times {10}^{6}}{{T}^{2}}$$

Setting \( {\Delta }_{2}^{1}\) = 0.98, yields T = 824°C. Omitting the lowest and highest temperature estimates yields an average of 926 ± 117°C (1σ)

1.7 Chemical Analyses of Rock Samples from a Measured Section of the Sill of Ferrar Dolerite on Portal Rock, Queen Alexandra Range (J.M. Hergt personal communication to G. Faure, April 27, 1987)

Table 14

13.6.7 (continued) Part 2

Table 15

13.6.7 (continued) Part 3

Table 16

13.6.7 (continued) Part 4

Table 17

13.6.7 (continued) Part 5

Table 18

1.8 Average Chemical Analyses of the Lexington Granophyre and Other Felsic Differentiates of the Dufek Intrusion in the Forrestal Range and Dufek Massif, in Weight Percent (Ford 1970; Ford and Kistler 1980)

Table 19

1.9 Modal Concentrations of Minerals in the Rocks of the Forrestal Range and the Dufek Massif (Data from Ford et al. 1983)

Table 20

1.10 Concentrations of Metals in Whole-Rock Samples of the Dufek Intrusion (Ford et al. 1983)

Table 21

1.11 Concentrations of Vanadium in the Oxide Minerals of the Dufek Intrusion in the Dufek Massif (Ford et al. 1983)

The vanadium concentrations of whole-rock samples of the Dufek intrusion in the Dufek Massif in Fig. 13.49 form a straight line represented by Eq. 13.4:

$$ \text{V}=356+317(\text{pyr})$$
(13.4)

where V is the vanadium concentration of a rock in the Dufek Massif in ppm and (pyr) is the modal concentration of pyroxene in volume percent in that rock. One of the samples (at 1,798 m) in Fig. 13.49 has an anomalously high vanadium concentration presumably because this rock contains oxides as well as pyroxene and plagioclase (Ford et al. 1983).

The vanadium concentration of the oxide minerals can be estimated by means of Eq. 13.5:

$$ {\text{aV}}_{\text{ox}}+{\text{bV}}_{\text{pyr}}+{\text{CV}}_{\text{plag}.}={\text{V}}_{\text{rock}}$$
(13.5)

where a, b, and c are weighting factors expressed as decimal fractions of the abundances of the minerals in weight percent (i.e., a + b + c = 1.0). The modal concentrations of the minerals in volume percent must be converted to percent by weight because the concentrations of vanadium are expressed in weight units. The conversion is based on Eq. 13.6:

$$ \text{Mass}=\text{Volume}\times \text{Density}$$
(13.6)

The modal concentrations of the minerals in volume percent in the anomalous rock sample are: Plagioclase = 67%, pyroxene = 30%, and oxides = 3% (Ford et al. 1983). The densities of these minerals are: Plagioclase = 2.70 g/cm3, pyroxene = 3.30 g/cm3, and oxides = 5.18 g/cm3. Therefore, the masses of the minerals and their abundances in this rock are:

Plagioclase: 0.67 × 2.70 = 1.809 g = 61.23 wt. %

Pyroxene: 0.30 × 3.30 = 0.99 g = 33.50 wt. %

Oxides: 0.03 × 5.18 = 0.1554 g = 5.25 wt. %

Sums = 2.9544 g = 99.98 wt. %

The concentration of plagioclase is 1.809 × 100/2.9544 = 61.23 wt. % and similarly for the other components. By substituting into Eq. 13.5 and solving for Vox we obtain: 0.0525 Vox + 0.335 × 320 + 0.6123 × 35.6 = 460

$$ {V}_{ox}=\frac{460-0.335\times 320+0.6123\times 35.6}{0.0525}=6305ppm$$

or Vox = 0.63% by weight.

The concentrations of chromium (Fig. 13.50a) and nickel (Fig. 13.50b) in the rocks of the Dufek intrusion are also positively correlated with modal pyroxene concentrations and define straight lines:

Cr = –2.06 + 3.11 (pyr),1 r = 0.9781

Ni = 20.1 + 1.310 (pyr), r = 0.9328 where r = linear correlation coefficient.

1Forced through the origin by adding 15 zeros.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Faure, G., Mensing, T.M. (2011). Ferrar Group: Dolerite Sills and the Dufek Intrusion. In: The Transantarctic Mountains. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9390-5_13

Download citation

Publish with us

Policies and ethics