Skip to main content

The Geomicrobiology of Catastrophe: A Comparison of Microbial Colonization in Post-volcanic and Impact Environments

  • Chapter
  • First Online:
  • 2341 Accesses

Abstract

During microbial life’s tenure on the Earth it has been subject to catastrophic disturbances both at the local and global scale. The number of mechanisms for these disturbances is very large and they include: storms, fires, earthquakes, ocean turnover and disease. However, two mechanisms of change have had a particularly profound influence exerted through geological changes wrought from within and outside the Earth – volcanism and asteroid and comet impact events, respectively. Both of these mechanisms of geological change have been linked to past mass extinctions (Alvarez et al. 1980; Wignall 2001). Although there is often a focus on the negative consequences of these changes and unravelling their effects on the global scale is necessary to understand their influence on the course of biological evolution, an equally pertinent line of enquiry is to understand the opportunities created in post-volcanic and impact environments and thus the way in which devastation caused by these events might provide new possibilities for life’s persistence on the Earth through time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The feldspathoids are a group of Silicate minerals which resemble feldspars but have a different structure and much lower silica content.

References

  • Abed RMM, Zein B, Al-Thukair A, de Beer D (2007) Phylogenetic diversity and activity of ­aerobic heterotrophic bacteria from a hypersaline oil-polluted microbial mat. Syst Appl Microbiol 30:319–330

    Article  PubMed  CAS  Google Scholar 

  • Adamo P, Violante P (1991) Weathering of volcanic rocks from Mt. Vesuvius associated with the lichen Stereocaulum vesuvianum. Pedobiologia 35:209–217

    CAS  Google Scholar 

  • Adamo P, Marchetiello A, Violante P (1993) The weathering of mafic rocks by lichens. Lichenologist 25:285–297

    Google Scholar 

  • Agee JK (1993) Fire ecology of Pacific Northwest forests. Island Press, Washington, DC

    Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction – experimental results and theoretical interpretation. Science 208:1095–1108

    Article  PubMed  CAS  Google Scholar 

  • Atkinson T, Gairns S, Cowan DA, Danson MJ, Hough DW, Johnson DB, Norris PR, Raven N, Robinson C, Robson R, Sharp RJ (2000) A microbiological survey of Montserrat Island ­hydrothermal biotopes. Extremophiles 4:305–313

    Article  PubMed  CAS  Google Scholar 

  • Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91:1609–1613

    Article  PubMed  CAS  Google Scholar 

  • Bell RA (1993) Cryptoendolithic algae of hot semi-arid lands and deserts. J Phycol 29:133–139

    Article  Google Scholar 

  • Büdel B, Wessels DCJ (1991) Rock inhabiting blue-green algae/cyanobacteria from hot arid regions. Algologic Stud 64:385–398

    Google Scholar 

  • Büdel B, Weber B, Kühl M, Pfanz H, Sültemeyer D, Wessels D (2004) Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology 2:261–268

    Article  Google Scholar 

  • Carson JL, Brown RM (1978) Studies of Hawaiian freshwater and soil algae. 2. Algal colonization and succession on a dated volcanic substrate. J Phycol 14:171–178

    Article  CAS  Google Scholar 

  • Cockell CS, Lee P (2002) The biology of impact craters – a review. Biol Rev 77:279–310

    Article  PubMed  Google Scholar 

  • Cockell CS, Osinski GR (2007) Impact-induced impoverishment and transformation of a sandstone habitat for lithophytic microorganisms. Meteor Planet Sci 42:1985–1993

    Article  CAS  Google Scholar 

  • Cockell CS, Stokes MD (2004) Widespread colonization by polar hypoliths. Nature 431:414

    Article  PubMed  CAS  Google Scholar 

  • Cockell CS, Stokes MD (2006) Hypolithic colonization of opaque rocks in the Arctic and Antarctic polar desert. Arctic Ant Alpine Res 38:335–342

    Article  Google Scholar 

  • Cockell CS, Lee P, Osinski G, Horneck G, Broady P (2002) Impact-induced microbial endolithic habitats. Meteor Planet Sci 37:1287–1298

    Article  CAS  Google Scholar 

  • Cockell CS, Osinski GR, Lee P (2003a) The impact crater as a habitat: effects of impact processing of target materials. Astrobiology 3:181–191

    Article  PubMed  Google Scholar 

  • Cockell CS, Rettberg P, Horneck G, Scherer K, Stokes DM (2003b) Measurements of microbial protection from ultraviolet radiation in polar terrestrial microhabitats. Polar Biol 26:62–69

    Google Scholar 

  • Cockell CS, Lee P, Broady P, Lim DSS, Osinski GR, Parnell J, Koeberl C, Pesonen L, Salminen J (2005) Effects of asteroid and comet impacts on habitats for lithophytic organisms – a ­synthesis. Meteor Planet Sci 40:1901–1914

    Article  CAS  Google Scholar 

  • Cockell CS, Olsson-Francis K, Herrera A, Meunier A (2009a) Alteration textures in terrestrial volcanic glass and the associated bacterial community. Geobiology 7:50–65

    Article  PubMed  CAS  Google Scholar 

  • Cockell CS, Olsson-Francis K, Knowles F, Kelly L, Herrera A, Thorsteinsson T, Marteinsson V (2009b) Bacteria in weathered basaltic glass, Iceland. Geomicrobiol J 26:491–507

    Article  CAS  Google Scholar 

  • de la Torre JR, Goebel BM, Friedmann EI, Pace NR (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry valleys, Antarctica. Appl Environ Microbiol 69:3858–3867

    Article  PubMed  Google Scholar 

  • del Pino JSN, Almenar ID, Rivero FN, Rodriguez-Rodriguez A, Rodriguez CA, Herrera CA, Garcia JAG, Hernandez JLM (2007) Temporal evolution of organic carbon and nitrogen forms in volcanic soils under broom scrub affected by a wildfire. Sci Total Environ 378:245–252

    Article  Google Scholar 

  • Donachie SP, Christenson BW, Kunkel DD, Malahoff A, Alam M (2002) Microbial community in acidic hydrothermal waters of volcanically active White Island, New Zealand. Extremophiles 6:419–425

    Article  PubMed  CAS  Google Scholar 

  • Eppard M, Krumbein W, Koch C, Rhiel E, Staley J, Stackebrandt E (1996) Morphological, physiological, and molecular characterization of actinomycetes isolated from dry soil, rocks, and monument surfaces. Arch Microbiol 166:12–22

    Article  PubMed  CAS  Google Scholar 

  • Fermani P, Mataloni G, Van de Vijver B (2007) Soil microalgal communities on an Antarctic active volcano (Deception Iceland, South Shetlands). Polar Biol 30:1381–1393

    Article  Google Scholar 

  • Fike DA, Cockell CS, Pearce D, Lee P (2003) Heterotrophic microbial colonization of the interior of impact-shocked rocks from Haughton impact structure, Devon Island, Nunavut, Canadian High Arctic. Int J Astrobiol 1:311–323

    Article  Google Scholar 

  • French BM (2004) The importance of being cratered: the new role of meteorite impact as a normal geological process. Meteor Planet Sci 39:169–197

    Article  CAS  Google Scholar 

  • Friedmann EI (1980) Endolithic microbial life in hot and cold deserts. Origins Life Evol Bios 10:223–235

    Article  CAS  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Gaylarde PM, Jungblut A, Gaylarde CC, Neilan BA (2006) Endolithic phototrophs from an active geothermal region in New Zealand. Geomicrobiol J 23:579–587

    Article  CAS  Google Scholar 

  • Gross W, Küver J, Tischendorf G, Bouchaala N, Büsch W (1998) Cryptoendolithic growth of the red alga Galdieria sulphuraria in volcanic areas. Eur J Phycol 33:25–31

    Article  Google Scholar 

  • Gundlapally SR, Garcia-Pichel F (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microb Ecol 52:345–357

    Article  PubMed  Google Scholar 

  • Herrera A, Cockell CS (2007) Exploring microbial diversity in volcanic environments: a review of methods in DNA extraction. J Microbiol Meth 70:1–12

    Article  CAS  Google Scholar 

  • Herrera A, Cockell CS, Self S, Blaxter M, Reitner J, Arp G, Dröse W, Tindle AG (2008) Bacterial colonization and weathering of terrestrial obsidian rock in Iceland. Geomicrobiol J 25:25–37

    Article  CAS  Google Scholar 

  • Herrera A, Cockell CS, Self S, Blaxter M, Reitner J, Thorsteinsson T, Arp G, Dröse W, Tindle A (2009) A cryptoendolithic community in volcanic glass. Astrobiology 9:369–381

    Article  PubMed  CAS  Google Scholar 

  • Hode T, Cady SL, von Dalwigk I, Kristiansson P (2008) Evidence of ancient microbial life in an impact structure and its implications for astrobiology – a case study. In: Seckbach J, Walsh M (eds) From fossils to astrobiology. Springer, Heidelberg, pp 249–273

    Chapter  Google Scholar 

  • Jacobsson SP, Gudmundsson MT (2008) Subglacial and intraglacial volcanic formations in Iceland. Jökull 58:179–196

    Google Scholar 

  • Jezberova J (2006) Phenotypic diversity and phylogeny of picocyanobacteria in mesotrophic and eutrophic freshwater reservoirs investigated by a cultivation-dependent polyphasic approach. PhD Thesis, University of South Bohemia, Czech Republic

    Google Scholar 

  • Katana A, Kwiatowski JM, Spalik K, Zakrys B, Szalacha E, Szymanska H (2001) Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast SSU rDNA. J Phycol 37:443–451

    Article  CAS  Google Scholar 

  • Kieffer SW, Phakey PP, Christie JM (1976) Shock processes in porous quartzite: transmission electron microscope observations and theory. Contrib Mineral Petrol 59:41–93

    Article  CAS  Google Scholar 

  • Koeberl C, Reimold WU (2004) Post-impact hydrothermal activity in meteorite impact craters and potential opportunities for life. Bioastronomy 2002 Life Stars 213:299–304

    CAS  Google Scholar 

  • Kring DA (1997) Air blast produced by the Meteor Crater impact event and a reconstruction of the affected environment. Meteor Planet Sci 32:517–530

    Article  CAS  Google Scholar 

  • Kring DA (2003) Environmental consequences of impact cratering events as a function of ambient conditions on Earth. Astrobiology 3:133–152

    Article  PubMed  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Woolley AR (1992) The construction of the total alkali-silica chemical classification of volcanic rocks. Mineral Petrol 46:1–22

    Article  Google Scholar 

  • Matthes U, Turner SJ, Larson DW (2001) Light attenuation by limestone rock and its constraint on the depth distribution of endolithic algae and cyanobacteria. Int J Plant Sci 162:263–270

    Article  Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press, Oxford

    Google Scholar 

  • Metzler A, Ostertag R, Redeker HJ, Stoffler D (1988) Composition of the crystalline basement and shock metamorphism of crystalline and sedimentary target rocks at the Haughton-impact-crater, Devon Island, Canada. Meteoritics 23:197–207

    Article  CAS  Google Scholar 

  • Murray AE, Grzymski JJ (2007) Diversity and genomics of Antarctic marine micro-organisms. Phil Trans R Soc B 362:2259–2271

    Article  PubMed  CAS  Google Scholar 

  • Nagy ML, Perez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological crusts in the Sonoran desert (Organ Pipe Cactus National Monument, AZ). FEMS Microb Ecol 54:233–245

    Article  CAS  Google Scholar 

  • Naumov MV (2005) Principal features of impact-generated hydrothermal circulation systems: mineralogical and geochemical evidence. Geofluids 5:165–184

    Article  CAS  Google Scholar 

  • Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2007) Microbial community succession in an unvegetated, recently deglaciated soil. Microbiol Ecol 53:110–122

    Article  Google Scholar 

  • Nienow JA, McKay CP, Friedmann EI (1988) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: light in the photosynthetically active region. Microbiol Ecol 16:271–289

    Article  CAS  Google Scholar 

  • Nogales B, Moore ER, Llobet-Brossa E, Rossello-Mora R, Amann R, Timmis KN (2001) Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol 67:1874–1884

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan LA, Fuller KE, Thomas EM, Turley CM, Fry JC, Weightman AJ (2004) Distribution and culturability of the uncultivated ‘AGG58 cluster’ of the Bacteroidetes phylum in aquatic environments. FEMS Microb Ecol 47:359–370

    Article  Google Scholar 

  • Omelon CR, Pollard WH, Ferris FG (2006) Chemical and ultrastructural characterization of high arctic cryptoendolithic habitats. Geomicrobiol J 23:189–200

    Article  CAS  Google Scholar 

  • Osinski GR (2007) Impact metamorphism of CaCO3-bearing sandstones at the Haughton structure, Canada. Meteor Planet Sci 42:1945–1960

    Article  CAS  Google Scholar 

  • Osinski GR, Spray JG, Lee P (2001) Impact-induced hydrothermal activity within the Haughton impact structure: generation of a transient, warm, wet oasis. Meteor Planet Sci 36:731–745

    Article  CAS  Google Scholar 

  • Osinski GR, Lee P, Parnell J, Spray JG, Baron MT (2005a) A case study of impact-induced hydrothermal activity: the Haughton impact structure, Devon Island, Canadian high arctic. Meteor Planet Sci 40:1859–1877

    Article  CAS  Google Scholar 

  • Osinski GR, Lee P, Spray JG, Parnell J, Lim DSS, Bunch TE, Cockell CS, Glass B (2005b) Geological overview and cratering model of the Haughton impact structure, Devon Island, Canadian High Arctic. Meteor Planet Sci 40:1759–1776

    Article  CAS  Google Scholar 

  • Pierson BK, Mitchell HK, Ruff-Roberts AL (1993) Chloroflexus aurantiacus and ultraviolet radiation: implications for archean shallow-water stromatolites. Origin Life Evol Biosph 23:243–260

    Article  Google Scholar 

  • Quintern LE, Horneck G, Eschweiler U, Bücker H (1992) A biofilm used as ultraviolet-dosimeter. Photochem Photobiol 55:389–395

    Article  Google Scholar 

  • Quintern LE, Puskeppeleit M, Rainer P, Weber S, El Naggar S, Eschweiler U, Horneck G (1994) Continuous dosimetry of the biologically harmful UV-radiation in Antarctica with the biofilm technique. J Photochem Photobiol 22:59–66

    Article  CAS  Google Scholar 

  • Saiz-Jimenez C, Garcia-Rowe J, Garcia del Cura MA, Ortega-Calvo JJ, Roekens E, Van Grieken R (1990) Endolithic cyanobacteria in Maastricht Limestone. Sci Total Environ 94:209–220

    Article  CAS  Google Scholar 

  • Schminke HU (2004) Volcanism. Springer, Berlin

    Book  Google Scholar 

  • Sherlock SC, Kelley SP, Parnell J, Green P, Lee P, Osinski GR, Cockell CS (2005) Re-evaluating the age of the Haughton impact event. Meteor Planet Sci 40:1777–1787

    Article  CAS  Google Scholar 

  • Shivaji S, Reddy GSN, Aduri RP, Kutty R, Ravenschlag K (2004) Bacterial diversity of a soil sample from Schirmacher Oasis, Antarctica. Cell Mol Biol 50:525–536

    PubMed  CAS  Google Scholar 

  • Stroncik NA, Schminke H (2002) Palagonite – a review. Int J Earth Sci 91:680–697

    Article  CAS  Google Scholar 

  • Stuart JC, Binzel RP (2004) Bias-corrected population, size distribution, and impact hazard for the near-Earth objects. Icarus 170:295–311

    Article  Google Scholar 

  • Tester PA, Varnam SM, Culver ME, Eslinger DL, Stumpf RP, Swift RN, Yungel JK, Black MD, Litaker RW (2003) Airborne detection of ecosystem responses to an extreme event: phytoplankton displacement and abundance after hurricane induced flooding in the Pamlico-Albemarle Sound system, North Carolina. Estuaries 26:1353–1364

    Article  Google Scholar 

  • Thorseth IH, Furnes H, Tumyr O (1991) A textural and chemical study of Icelandic palagonite of varied composition and its bearing on the mechanism of the glass-palagonite transformation. Geochim Cosmochim Acta 55:731–749

    Article  CAS  Google Scholar 

  • Toon OW, Zahnle K, Morrison D, Turco RP, Covey C (1997) Environmental perturbations caused by the impacts of asteroids and comets. Rev Geophys 35:41–78

    Article  CAS  Google Scholar 

  • Turmel M, Ehara M, Otis C, Lemieux C (2002) Phylogenetic relationships among strepto­phytes as inferred from chloroplast small and large subunit rRNA gene sequences. J Phycol 38:364–375

    Article  Google Scholar 

  • Turner S (1997) Molecular systematics of oxygenic photosynthetic bacteria. Plant Syst Evol (Suppl) 11:13–52

    Article  CAS  Google Scholar 

  • Ustinova I, Krienitz L, Huss VAR (2001) Closteriopsis acicularis (G.M. Smith) Belcher et Swale us a fusiform alga closely related to Chlorella kessleri Fott et Nováková (Chlorophyta, Terbouxiophyceae). Eur J Physol 36:341–351

    Google Scholar 

  • Van Thienen P, Benzerara K, Brueur D, Gillmann C, Labrosse S, Lognonne P, Spohn T (2007) Water, life and planetary habitability. Space Sci Rev 129:167–203

    Article  Google Scholar 

  • Versh E, Kirsimae K, Joeleht A, Plado J (2005) Cooling of the Kardla impact crater: I. The mineral paragenetic sequence observation. Meteor Planet Sci 40:3–19

    Article  CAS  Google Scholar 

  • Walker JJ, Pace NR (2005) Phylogenetic composition of rocky mountain endolithic microbial ecosystems. Appl Environ Microbiol 73:3497–3504

    Article  PubMed  CAS  Google Scholar 

  • Walker JJ, Spear JR, Pace NR (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434:1011–1014

    Article  PubMed  CAS  Google Scholar 

  • Weber B, Wessels DCJ, Büdel B (1996) Biology and ecology of cryptoendolithic cyanobacteria of a sandstone outcrop in the Northern Province, South Africa. Algol Stud 83:565–579

    Google Scholar 

  • Wignall PB (2001) Large igneous provinces and mass extinctions. Earth Sci Rev 53:1–33

    Article  CAS  Google Scholar 

  • Wolff-Boenisch D, Gíslason SR, Oelkers EH, Putnis CV (2004) The dissolution rates of natural glasses as a function of their composition at pH 4 and 10, and temperatures from 25 to 74°C. Geochim Cosmochim Acta 68:4843–4858

    Article  CAS  Google Scholar 

  • Wolff-Boenisch D, Gíslason SR, Oelkers EH (2006) The effect of crystallinity on dissolution rates and CO2 consumption capacity of silicates. Geochim Cosmochim Acta 70:858–870

    Article  CAS  Google Scholar 

  • Wu X, Xi WY, Ye WJ, Yang H (2007) Bacterial community composition of a shallow hypertrophic freshwater lake in China. FEMS Microb Ecol 61:85–96

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank the Leverhulme Trust (project number F/00 269/N) and the Royal Society for support for the work on microorganisms on volcanic environments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Seaton Cockell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Cockell, C.S. (2010). The Geomicrobiology of Catastrophe: A Comparison of Microbial Colonization in Post-volcanic and Impact Environments. In: Barton, L., Mandl, M., Loy, A. (eds) Geomicrobiology: Molecular and Environmental Perspective. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9204-5_9

Download citation

Publish with us

Policies and ethics