Skip to main content

An Extension of Least Squares Methods for Smoothing Oscillation of Motion Predicting Function

  • Conference paper
  • First Online:
Innovations in Computing Sciences and Software Engineering

Abstract

A novel hybrid technique for detection and predicting the motion of objects in video stream is presented in this paper. The novelty consists in extension of Savitzky-Golay smoothing filter applying difference approach for tracing object mass center with or without acceleration in noised images. The proposed adaptation of least squares methods for smoothing the fast varying values of motion predicting function permits to avoid the oscillation of that function with the same degree of used polynomial. The better results are obtained when the time of motion interpolation is divided into subintervals, and the function is represented by different polynomials over each subinterval. Therefore, in proposed hybrid technique the spatial clusters with objects in motion are detected by the image difference operator and behavior of those clusters is analyzed using their mass centers in consecutive frames. Then the predicted location of object is computed using modified algorithm of weighted least squares model. That provides the tracing possible routes which now are invariant to oscillation of predicting polynomials and noise presented in images. For irregular motion frequently occurred in dynamic scenes, the compensation and stabilization technique is also proposed in this paper. On base of several simulated kinematics experiments the efficiency of proposed technique is analyzed and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Farneback. Very high accuracy velocity estimation using orientation tensors, parametric motion, and simultaneous segmentation of the motion field. In ICCV, Vancouver, July 2001, pp. 171–177.

    Google Scholar 

  2. O. Starostenko, A. Ramírez, A. Zehe, G. Burlak. Novel algorithms for estimating motion characteristics within a limited sequence of images, in Book Recent Advances in Interdisciplinary Applied Physics, Elsevier , UK , 2005, pp. 277-281.

    Google Scholar 

  3. K. Bendjilali, F. Berkhuche and T. Jin, Characterizing the exact collision course in the plane for mobile robotics application, in Book Novel Algorithms and Techniques in telecommunications, Automation and Industrial Electronics, Ed. Tarek Sobh, Khaled Elleithy, Springer, 2008 (CISSE 2007 proceedings)

    Google Scholar 

  4. J. T. Tello, O. Starostenko, G.Burlak, “New Motion Prediction Algorithm Invairant to Rotation and Occlusion”, J. Advances in Computer Science in México, Vol. 13. 2005. pp.23-33

    Google Scholar 

  5. B. Jahne, Digital image processing, 5ed., Springer, 2002

    Google Scholar 

  6. G. Papadopoulos, R. Bryant, W. Pitts, “Flow Characterization of Flickering Methane/Air Diffusion Flames Using Particle Image Velocimetry”, J. Experiments in Fluids, Vol. 33, No. 3, 2002, pp. 472-481.

    Google Scholar 

  7. W. Gander, J.Hrebícek U von Matt. Smoothing Filters. Solving Problems in Scientific Computing Using Maple and MATLAB, Springer, Paperback, Jul 27, 2004.

    Google Scholar 

  8. J. Wolberg, Data Analysis Using the Method of Linear Squares, Kindle Ed., 2006.

    Google Scholar 

  9. C. Radhakrishna Rao, H.Toutenburg, Heumann, Linear Models and Generalization: Least Squares and Alternatives, Springer, 2007.

    Google Scholar 

  10. R. Chan, C.Greif, Milestones in Matrix Computation: The selected works of Gene H. Golub, Oxford Science publications, 2007.

    Google Scholar 

  11. S. C. Di Pittinuri, Human & Machine Perception: Communication, Interaction, and Integration, NY, World Scientific Publishing Company, 2005.

    Google Scholar 

  12. J Ramsay, B W Silverman, Functional Data Analysis, Springer, USA, 2005.

    MATH  Google Scholar 

  13. A. Grebennikov, Método de Splines: Elementos teóricos, Algorítmos y Programas, Max Press, Moscow, 2008.

    Google Scholar 

Download references

Acknowledgment

This research is sponsored by Mexican National Council of Science and Technology, CONACyT, Projects: #48259, #109115 and #109417.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Starostenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Starostenko, O., Tello-Martínez, J., Alarcon-Aquino, V., Rodriguez-Asomoza, J., Rosas-Romero, R. (2010). An Extension of Least Squares Methods for Smoothing Oscillation of Motion Predicting Function. In: Sobh, T., Elleithy, K. (eds) Innovations in Computing Sciences and Software Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9112-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9112-3_48

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9111-6

  • Online ISBN: 978-90-481-9112-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics