Skip to main content

Vortex dynamics of turbulence–coherent structure interaction

  • Original Article
  • Conference paper
150 Years of Vortex Dynamics

Part of the book series: Iutam Bookseries ((IUTAMBOOK,volume 20))

  • 3 Accesses

Abstract

We study the interaction between a coherent structure (CS) and imposed external turbulence by employing direct numerical simulations (DNS) designed for unbounded flows with compact vorticity distribution. Flow evolution comprises (i) the reorganization of turbulence into finer-scale spiral filaments, (ii) the growth of wave-like perturbations within the vortex core, and (iii) the eventual arrest of production, leading to the decay of ambient turbulence. The filaments, preferentially aligned in the azimuthal direction, undergo two types of interactions: parallel filaments pair to form higher-circulation “threads”, and anti-parallel threads form dipoles that self-advect radially outwards. The consequent radial transport of angular momentum manifests as an overshoot of the mean circulation profile—a theoretically known consequence of faster-than-viscous vortex decay. It is found that while the resulting centrifugal instability can enhance turbulence production, vortex decay is arrested by the dampening of the instability due to the “turbulent mixing” caused by instability-generated threads. Ensemble-averaged turbulence statistics show strong fluctuations within the core; these are triggered by the external turbulence, and grow even as the turbulence decays. This surprising growth on a normal-mode-stable vortex results from algebraic amplification through “linear transient growth”. Transient growth is examined by initializing DNS with the “optimal” modes obtained from linear analysis. The simulations show that the growth of transient modes reproduces the prominent dynamics of CS-turbulence interaction: formation of thread-dipoles, growth of core fluctuations, and appearance of bending waves on the column’s core. At the larger Reynolds numbers prevailing in practical flows, transient growth may enable accelerated vortex decay through vortex column breakdown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antkowiak A., Brancher P.: Transient growth for the Lamb-Oseen vortex. Phys. Fluids 16(1), L1–L4 (2004)

    Article  MathSciNet  Google Scholar 

  2. Cambon C., Scott J.F.: Linear and nonlinear models of anisotropic turbulence. Ann. Rev. Fluid Mech. 31, 1–54 (1999)

    Article  MathSciNet  Google Scholar 

  3. Davenport W.J., Rife M.C., Liapis S.I., Follin G.J.: The structure and development of a wing-tip vortex. J. Fluid Mech. 312, 67–106 (1996)

    Article  MathSciNet  Google Scholar 

  4. Govindaraju S.P., Saffman P.G.: Flow in a turbulent trailing vortex. Phys. Fluids 14(10), 2074–2080 (1971)

    Article  Google Scholar 

  5. Hamilton J.M., Kim J., Waleffe F.: Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317–348 (1995)

    Article  MATH  Google Scholar 

  6. Hoffman E.R., Joubert P.N.: Turbulent line vortices. J. Fluid Mech. 16(3), 395–411 (1963)

    Article  MATH  Google Scholar 

  7. Jacquin L., Pantano C.: On the persistence of trailing vortices. J. Fluid Mech. 471, 159–168 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kerswell R.R.: Elliptical instability. Ann. Rev. Fluid Mech. 34, 83–113 (2002)

    Article  MathSciNet  Google Scholar 

  9. Mansour N.N., Wray A.A.: Decay of isotropic turbulence at low Reynolds number. Phys. Fluids 6(2), 808–814 (1994)

    Article  MATH  Google Scholar 

  10. Marshall, J.S., Beninati, M.L.: Turbulence evolution in vortex dominated flows. In: Debnath, L., Riahi, D.N. (eds.) Advances in Fluid Mechanics, vol. 25 (Nonlinear instability, chaos and turbulence II, p. 1), pp. 1–40. WIT Press, Southampton, England (2000)

    Google Scholar 

  11. Mayer E.W., Powell K.G.: Viscous and inviscid instabilities of a trailing vortex. J. Fluid Mech. 245, 91–114 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Melander M.V., Hussain F.: Coupling between a coherent structure and fine-scale turbulence. Phys. Rev. E 48(4), 2669–2689 (1993a)

    Article  MathSciNet  Google Scholar 

  13. Melander M.V., Hussain F.: Polarized vortex dynamics on a vortex column. Phys. Fluids A 5, 1992–2003 (1993b)

    Article  MATH  MathSciNet  Google Scholar 

  14. Phillips W.R.C., Graham J.A.H.: Reynolds-stress measurements in a turbulent trailing vortex. J. Fluid Mech. 147, 353–371 (1984)

    Article  Google Scholar 

  15. Pradeep D.S., Hussain F.: Effects of boundary condition in numerical simulations of vortex dynamics. J. Fluid Mech. 516, 115–124 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pradeep D.S., Hussain F.: Transient growth of perturbations in vortex column. J. Fluid Mech. 550, 251–288 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ragab S., Sreedhar M.: Numerical simulation of vortices with axial velocity deficits. Phys. Fluids 7(3), 549–558 (1995)

    Article  MATH  Google Scholar 

  18. Rennich S.C., Lele S.K.: Numerical method for incompressible vortical flows with two unbounded directions. J. Comput. Phys. 137, 101–129 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Saffman P.G.: Structure of turbulent line vortices. Phys. Fluids 16(8), 1182–1188 (1973)

    Article  Google Scholar 

  20. Schoppa W., Hussain F.: Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57–108 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Spalart P.: Aircraft trailing vortices. Ann. Rev. Fluid Mech. 30, 107–138 (1998)

    Article  MathSciNet  Google Scholar 

  22. Sreedhar M., Ragab S.: Large eddy simulation of longitudinal stationary vortices. Phys. Fluids 6(7), 2501–2514 (1994)

    Article  MATH  Google Scholar 

  23. Wallin S., Girimaji S.S.: Evolution of an isolated turbulent trailing vortex. AIAA J. 38(4), 657–665 (2000)

    Article  Google Scholar 

  24. Zeman O.: The persistence of trailing vortices: a modeling study. Phys. Fluids 7(1), 135–143 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Pradeep .

Editor information

Editors and Affiliations

Additional information

Communicated by H. Aref

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this paper

Cite this paper

Pradeep, D.S., Hussain, F. (2010). Vortex dynamics of turbulence–coherent structure interaction. In: Aref, H. (eds) 150 Years of Vortex Dynamics. Iutam Bookseries, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8584-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8584-9_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8583-2

  • Online ISBN: 978-90-481-8584-9

  • eBook Packages: Engineering (R0)

Publish with us

Policies and ethics