Skip to main content

Chapter 24 Antioxidants and Photo-oxidative Stress Responses in Plants and Algae

  • Chapter
The Chloroplast

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 31))

Summary

Ever since the origin of oxygenic photosynthesis and the accumulation of molecular oxygen in the earth’s atmosphere over 2.2 billion years ago, living organisms have needed to adapt to life in an aerobic atmosphere and cope with reactive oxygen species (ROS). The term ROS refers to various forms of harmful oxygen excited states, radicals, and peroxides. Specifically, these molecules include singlet oxygen, hydroxyl radical, hydrogen peroxide, and superoxide anion, which can readily react with and damage cell membrane lipids, nucleic acids, and proteins. Living organisms have evolved several ways to protect themselves from oxidative damage, including synthesis of various antioxidants and enzymes that neutralize ROS. When the ability to prevent and/or cope with oxidative damage is insufficient to protect cells, oxidative stress occurs. A number of antioxidants exist in photosynthetic organisms, and their roles in protecting cells against oxidative stress have been extensively studied. Some antioxidants seem to have overlapping functions, which might act as a backup mechanism under conditions when the capacity of one antioxidant is overwhelmed. Different antioxidants have roles in protecting cells in specific compartments and in particular conditions. Other than protecting cells from oxidative damage, these antioxidants also have been shown to have other roles such as cell signaling or maintaining cellular redox state. This chapter summarizes knowledge about oxidative damage in oxygenic photosynthetic organisms with a focus on ROS scavenging mechanisms and the roles of antioxidants and related enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

γ-GCS:

γ-glutamylcysteine synthetase

APX:

ascorbate peroxidase

DHA:

dehydroascorbate

DMPBQ:

2,3-dimethyl-6-phytyl-1,4-benzoquinone

ER:

endoplasmic recticulum

GPX:

glutathione peroxidase

GPXH:

glutathione peroxidase homolog

GSH:

reduced glutathione

GSSG:

oxidized glutathione

LHC:

light-harvesting complex

MDA:

monodehydroascorbate

MPBQ:

2-methyl-6-phytyl-1,4-benzoquinone

MV:

methyl viologen

NADPH:

nicotinamide adenine dinucleotide phosphate

NPQ:

non-photochemical quenching

PRX:

peroxiredoxin

PSI:

photosystem I

PSII:

photosystem II

PUFA:

polyunsaturated fatty acid

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TRX:

thioredoxin

References

  • Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U and Voll LM (2007) Specific roles of α-and γ-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol 143: 1720–1738

    Article  PubMed  CAS  Google Scholar 

  • Allen MD, Kropat J, Tottey S, Del Campo JA and Merchant SS (2007) Manganese deficiency inChlamydomonas results in loss of photosystem II and MnSOD function, sensitivity toperoxides, and secondary phosphorus and iron deficiency. Plant Physiol 143: 263–277

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM and Chow WS (2002) Structural and functional dynamics of plant photosystem II.Phil Trans R Soc Lond B 357: 1421–1430

    Google Scholar 

  • Apel K and Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signaltransduction. Ann Rev Plant Biol 55: 373–399

    Article  CAS  Google Scholar 

  • Aro EM, Virgin I and Andersson B (1993) Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143: 113–134

    Article  PubMed  CAS  Google Scholar 

  • Arrigo AP (1999) Gene expression and the thiol redox state. Free Radic Biol Med 27: 936–944

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase: a hydrogen peroxide--scavenging enzyme in plants.Physiol Plant 85: 235–241

    Google Scholar 

  • Asada K (1999) The water--water cycle in chloroplasts: Scavenging of active oxygens anddissipation of excess photons. Ann Rev Plant Physiol Plant Mol Biol 50: 601–639

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and theirfunctions. Plant Physiol 141: 391–396

    Article  PubMed  CAS  Google Scholar 

  • Baier M and Dietz KJ (1999) Protective function of chloroplast 2-cysteine peroxiredoxin inphotosynthesis. Evidence from transgenic Arabidopsis. Plant Physiol 119: 1407–1414

    Article  PubMed  CAS  Google Scholar 

  • Baier M, Noctor G, Foyer CH and Dietz KJ (2000) Antisense suppression of 2-cysteineperoxiredoxin in Arabidopsis specifically enhances the activities and expression ofenzymes associated with ascorbate metabolism but not glutathione metabolism. PlantPhysiol 124: 823–832

    CAS  Google Scholar 

  • Balmer Y, Vensel WH, Tanaka CK, Hurkman WJ, Gelhaye E, Rouhier N, Jacquot JP, ManieriW, SchĂ¼rmann P, Droux M and Buchanan BB (2004) Thioredoxin links redox to theregulation of fundamental processes of plant mitochondria. Proc Natl Acad Sci USA 101: 2642–2647

    Article  PubMed  CAS  Google Scholar 

  • Baroli I, Gutman BL, Ledford HK, Shin JW, Chin BL, Havaux M and Niyogi KK (2004) Photo-oxidative stress in a xanthophyll--deficient mutant of Chlamydomonas. J Biol Chem 279:6337–6344

    Article  PubMed  CAS  Google Scholar 

  • Baroli I and Niyogi KK (2000) Molecular genetics of xanthophyll--dependent photoprotection ingreen algae and plants. Phil Trans R Soc Lond B 355: 1385–1393

    Article  CAS  Google Scholar 

  • Batish DR, Singh HP, Setia N, Kaur S and Kohli RK (2006) 2-Benzoxazolinone (BOA) inducedoxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities inmung bean (Phaseolus aureus). Plant Physiol Biochem 44: 819–827

    Article  PubMed  CAS  Google Scholar 

  • Beck E, Burkert A and Hofmann M (1983) Uptake of L-ascorbate by intact spinachchloroplasts. Plant Physiol 73: 41–45

    Article  PubMed  CAS  Google Scholar 

  • Blokhina O, Virolainen E and Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygendeprivation stress: a review. Ann Bot 91: 179–194

    Article  PubMed  CAS  Google Scholar 

  • Bolwell GP and Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen speciesin plant defence – a broad perspective. Physiol Mol Plant Pathol 51: 347–366

    Article  CAS  Google Scholar 

  • Bratt CE, Arvidsson P-O, Carlsson M and Ă…kerlund H-E (1995) Regulation of violaxanthin de-epoxidase activity by pH and ascorbate concentration. Photosynth Res 45: 169–175

    Article  CAS  Google Scholar 

  • Broin M, Cuine S, Eymery F and Rey P (2002) The plastidic 2-cysteine peroxiredoxin is a targetfor a thioredoxin involved in the protection of the photosynthetic apparatus againstoxidative damage. Plant Cell 14: 1417–1432

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB and Balmer Y (2005) Redox regulation: A broadening horizon. Ann Rev PlantBiol 56: 187–220

    Article  CAS  Google Scholar 

  • Burton GW and Traber MG (1990) Vitamin E – Antioxidant activity, biokinetics, andbioavailability. Ann Rev Nutr 10: 357–382

    Article  CAS  Google Scholar 

  • Carmel-Harel O and Storz G (2000) Roles of the glutathione- and thioredoxin-dependentreduction systems in the Escherichia coli and Saccharomyces cerevisiae responses tooxidative stress. Ann Rev Microbiol 54: 439–461

    Article  CAS  Google Scholar 

  • Chamnongpol S, Willekens H, Moeder W, Langebartels C, Sandermann H, Van Montagu A,InzĂ© D and Van Camp W (1998) Defense activation and enhanced pathogen toleranceinduced by H2O2 in transgenic tobacco. Proc Natl Acad Sci USA 95: 5818–5823

    Article  PubMed  CAS  Google Scholar 

  • Charles SA and Halliwell B (1980) Effect of hydrogen-peroxide on spinach (Spinacia oleracea)chloroplast fructose biphosphatase. Biochem J 189: 373–376

    PubMed  CAS  Google Scholar 

  • Cheng NH (2008) AtGRX4, an Arabidopsis chloroplastic monothiol glutaredoxin, is able tosuppress yeast grx5 mutant phenotypes and respond to oxidative stress. FEBS Lett 582: 848–854

    Article  PubMed  CAS  Google Scholar 

  • Cheng NH, Liu JZ, Brock A, Nelsono RS and Hirschi KD (2006) AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage. J Biol Chem 281: 26280–26288

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS, May MJ, Howden R and Rolls B (1998) The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase. Plant J 16: 73–78

    Article  PubMed  CAS  Google Scholar 

  • Cogdell RJ and Frank HA (1987) How carotenoids function in photosynthetic bacteria. Biochim Biophys Acta 895: 63–79

    Article  PubMed  CAS  Google Scholar 

  • Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N and Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci USA 96: 4198–4203

    Article  PubMed  CAS  Google Scholar 

  • Conklin PL, Pallanca JE, Last RL and Smirnoff N (1997) L-ascorbic acid metabolism in the ascorbate-deficient Arabidopsis mutant vtc1. Plant Physiology 115: 1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Conklin PL, Williams EH and Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93: 9970–9974

    Article  PubMed  CAS  Google Scholar 

  • Copley SD, Novak WRP and Babbitt PC (2004) Divergence of function in the thioredoxin fold superfamily: Evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor. Biochemistry 43: 13981–13995

    Article  PubMed  CAS  Google Scholar 

  • Creissen G, Firmin J, Fryer M, Kular B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N, Wellburn A and Mullineaux P (1999) Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell 11: 1277–1291

    PubMed  CAS  Google Scholar 

  • Dai S, Schwendtmayer C, SchĂ¼rmann P, Ramaswamy S and Eklund H (2000) Redox signaling in chloroplasts: Cleavage of disulfides by an iron-sulfur cluster. Science 287: 655–658

    Article  PubMed  CAS  Google Scholar 

  • Davison PA, Hunter CN and Horton P (2002) Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418: 203–206

    Article  PubMed  CAS  Google Scholar 

  • Dayer R, Fischer BB, Eggen RIL and Lemaire SD (2008) The peroxiredoxin and glutathione peroxidase families in Chlamydomonas reinhardtii. Genetics 179: 41–57

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020: 1–24

    Article  CAS  Google Scholar 

  • Dietz K-J (2003) Plant peroxiredoxins. Ann Rev Plant Biol 54: 93–107

    Article  CAS  Google Scholar 

  • Dietz K-J, Horling F, König J and Baier M (2002) The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. J Exp Bot 53: 1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Dietz K-J, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SMN, Baier M and Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57: 1697–1709

    Article  PubMed  CAS  Google Scholar 

  • Dos Santos CV and Rey P (2006) Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci 11: 329–334

    Article  CAS  Google Scholar 

  • Elrad D, Niyogi KK and Grossman AR (2002) A major light-harvesting polypeptide of photosystem II functions in thermal dissipation. Plant Cell 14: 1801–1816

    Article  PubMed  CAS  Google Scholar 

  • Filomeni G, Rotilio G and Ciriolo MR (2002) Cell signalling and the glutathione redox system. Biochem Pharmacol 64: 1057–1064

    Article  PubMed  CAS  Google Scholar 

  • Fischer BB, Eggen RIL, Trebst A and Krieger-Liszkay A (2006) The glutathione peroxidase homologous gene Gpxh in Chlamydomonas reinhardtii is upregulated by singlet oxygen produced in photosystem II. Planta 223: 583–590

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH (1997) Photosynthetic oxygen metabolism. In: Scandalios J (ed) Oxidative stress and the molecular biology of antioxidant defenses, pp. 587–621. Cold Spring Harbor Laboratory Press, Plainview, NY

    Google Scholar 

  • Foyer CH and Lelandais M (1996) A comparison of the relative rates of transport of ascorbate and glucose across the thylakoid, chloroplast and plasmalemma membranes of pea leaf mesophyll cells. J Plant Physiol 148: 391–398

    Article  CAS  Google Scholar 

  • Foyer CH and Noctor G (2000) Oxygen processing in photosynthesis: regulation and signalling. New Phytol 146: 359–388

    Article  CAS  Google Scholar 

  • Fukuzawa K, Tokumura A, Ouchi S and Tsukatani H (1982) Antioxidant activities of tocopherols on Fe2+-ascorbate-induced lipid-peroxidation in lecithin liposomes. Lipids 17: 511–513

    Article  PubMed  CAS  Google Scholar 

  • Gaber A, Yoshimura K, Tamoi M, Takeda T, Nakano Y and Shigeoka S (2004) Induction and functional analysis of two reduced nicotinamide adenine dinucleotide phosphate-dependent glutathione peroxidase-like proteins in Synechocystis PCC 6803 during the progression of oxidative stress. Plant Physiol 136: 2855–2861

    Article  PubMed  CAS  Google Scholar 

  • Gaber A, Yoshimura K, Yamamoto T, Yabuta Y, Takeda T, Miyasaka H, Nakano Y and Shigeoka S (2006) Glutathione peroxidase-like protein of Synechocystis PCC 6803 confers tolerance to oxidative and environmental stresses in transgenic Arabidopsis. Physiol Plant 128: 251–262

    Article  CAS  Google Scholar 

  • Giacomelli L, Masi A, Ripoli DR, Lee MJ and van Wijk KJ (2007) Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necrosis when levels of cellular ascorbate are low. Plant Mol Biol 65: 627–644

    Article  PubMed  CAS  Google Scholar 

  • Grant CM, MacIver FH and Dawes IW (1996) Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet 29: 511–515

    Article  PubMed  CAS  Google Scholar 

  • Gupta AS, Heinen JL, Holaday AS, Burke JJ and Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90: 1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Havaux M, Bonfils J-P, LĂ¼tz C and Niyogi KK (2000) Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin de-epoxidase. Plant Physiol 124: 273–284

    Article  PubMed  CAS  Google Scholar 

  • Havaux M, Eymery F, Porfirova S, Rey P and Dörmann P (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17: 3451–3469

    Article  PubMed  CAS  Google Scholar 

  • Hell R and Bergmann L (1990) γ-Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localization. Planta 180: 603–612

    Article  CAS  Google Scholar 

  • Hofius D and Sonnewald U (2003) Vitamin E biosynthesis: biochemistry meets cell biology. Trends Plant Sci 8: 6–8

    Article  PubMed  CAS  Google Scholar 

  • Horemans N, Foyer CH and Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5: 263–267

    Article  PubMed  CAS  Google Scholar 

  • Horling F, Lamkemeyer P, König J, Finkemeier I, Kandlbinder A, Baier M and Dietz K-J (2003) Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiol 131: 317–325

    Article  PubMed  CAS  Google Scholar 

  • Imsande J (1999) Iron-sulfur clusters: Formation, perturbation, and physiological functions. Plant Physiol Biochem 37: 87–97

    Article  CAS  Google Scholar 

  • Ito H, Iwabuchi M and Ogawa K (2003) The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione. Plant Cell Physiol 44: 655–660

    Article  PubMed  CAS  Google Scholar 

  • Ivanov B, Asada K, Kramer DM and Edwards G (2005) Characterization of photosynthetic electron transport in bundle sheath cells of maize. I. Ascorbate effectively stimulates cyclic electron flow around PSI. Planta 220: 572–581

    Article  PubMed  CAS  Google Scholar 

  • Jacquot JP, Gelhaye E, Rouhier N, Corbier C, Didierjean C and Aubry A (2002) Thioredoxins and related proteins in photosynthetic organisms: molecular basis for thiol dependent regulation. Biochem Pharmacol 64: 1065–1069

    Article  PubMed  CAS  Google Scholar 

  • Kaiser W (1976) Effect of hydrogen peroxide on CO2 fixation of isolated intact chloroplasts. BiochimBiophys Acta 440: 476–482

    Article  CAS  Google Scholar 

  • Kaiser WM (1979) Reversible inhibition of the calvin cycle and activation of oxidative pentose-phosphate cycle in isolated intact chloroplasts by hydrogen peroxide. Planta 145: 377–382

    Article  CAS  Google Scholar 

  • Kamal-Eldin A and Appelqvist LA (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31: 671–701

    Article  PubMed  CAS  Google Scholar 

  • Kangasjärvi S, Lepistö A, Hännikäinen K, Piippo M, Luomala E-M, Aro E-M and Rintamäki E (2008) Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochem J 412: 275–285

    Article  PubMed  CAS  Google Scholar 

  • Kanwischer M, Porfirova S, BergmĂ¼ller E and Dörmann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiology 137: 713–723

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M and Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420: 829–832

    Article  PubMed  CAS  Google Scholar 

  • Keren N, Gong H and Ohad I (1995) Oscillations of reaction center II: D1 protein degradation in vivo induced by repetitive light flashes. J Biol Chem 270: 806–814

    Article  PubMed  CAS  Google Scholar 

  • Klughammer B, Baier M and Dietz K-J (1998) Inactivation by gene disruption of 2-cysteine-peroxiredoxin in Synechocystis sp. PCC 6803 leads to increased stress sensitivity. Physiol Plant 104: 699–706

    Article  CAS  Google Scholar 

  • Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56: 337–346

    Article  PubMed  CAS  Google Scholar 

  • KĂ¼hn H and Borchert A (2002) Regulation of enzymatic lipid peroxidation: The interplay of peroxidizing and peroxide reducing enzymes. Free Radic Biol Med 33: 154–172

    Article  PubMed  Google Scholar 

  • Kurepa J, HĂ©rouart D, Van Montagu M and InzĂ© D (1997) Differential expression of CuZn- and Fe-superoxide dismutase genes of tobacco during development, oxidative stress, and hormonal treatments. Plant Cell Physiol 38: 463–470

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Hall JD, Knight MR and Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138: 882–897

    Article  PubMed  CAS  Google Scholar 

  • Ledford HK, Baroli I, Shin JW, Fischer BB, Eggen RIL and Niyogi KK (2004) Comparative profiling of lipid-soluble antioxidants and transcripts reveals two phases of photo-oxidative stress in a xanthophyll-deficient mutant of Chlamydomonas reinhardtii. Mol Genet Genomics 272: 470–479

    Article  PubMed  CAS  Google Scholar 

  • Ledford HK, Chin BL and Niyogi KK (2007) Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii. Eukaryot Cell 6: 919–930

    Article  PubMed  CAS  Google Scholar 

  • Lemaire SD (2004) The glutaredoxin family in oxygenic photosynthetic organisms. Photosynth Res 79: 305–318

    Article  PubMed  CAS  Google Scholar 

  • Lemaire SD, Guillon B, Le Marechal P, Keryer E, Miginiac-Maslow M and Decottignies P (2004) New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 101: 7475–7480

    Article  PubMed  CAS  Google Scholar 

  • Lemaire S, Michelet L, Zaffagnini M, Massot V and Issakidis-Bourguet E (2007) Thioredoxins in chloroplasts. Curr Genet 51: 343–365

    Article  PubMed  CAS  Google Scholar 

  • Lemaire SD and Miginiac-Maslow M (2004) The thioredoxin superfamily in Chlamydomonas reinhardtii. Photosynth Res 82: 203–220

    Article  PubMed  CAS  Google Scholar 

  • Lesser MP and Stochaj WR (1990) Photoadaptation and protection against active forms of oxygen in the symbiotic procaryote Prochloron sp. and its ascidian host. Appl Environ Microbiol 56: 1530–1535

    PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R and Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Sakuragi Y, Bryant DA and DellaPenna D (2005) Tocopherols protect Synechocystis sp strain PCC 6803 from lipid peroxidation. Plant Physiol 138: 1422–1435

    Article  PubMed  CAS  Google Scholar 

  • Malanga G, Kozak RG and Puntarulo S (1999) N-acetylcysteine-dependent protection against UV-B damage in two photosynthetic organisms. Plant Sci 141: 129–137

    Article  CAS  Google Scholar 

  • Mallick N and Mohn FH (2000) Reactive oxygen species: response of algal cells. J Plant Physiol 157: 183–193

    Article  CAS  Google Scholar 

  • Mallick N and Rai LC (1999) Response of the antioxidant systems of the nitrogen fixing cyanobacterium Anabaena doliolum to copper. J Plant Physiol 155: 146–149

    Article  CAS  Google Scholar 

  • Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4: 130–135

    Article  PubMed  Google Scholar 

  • Michelet L, Zaffagnini M, Massot V, Keryer E, Vanacker H, Miginiac-Maslow M, Issakidis-Bourguet E and Lemaire S (2006) Thioredoxins, glutaredoxins, and glutathionylation: new crosstalks to explore. Photosynth Res 89: 225–245

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7: 405–410

    Article  PubMed  CAS  Google Scholar 

  • Morell S, Follmann H, DeTullio M and Häberlein I (1997) Dehydroascorbate and dehydroascorbate reductase are phantom indicators of oxidative stress in plants. FEBS Lett 414: 567–570

    Article  PubMed  CAS  Google Scholar 

  • MĂ¼ller P, Li X-P and Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125: 1558–1566

    Article  PubMed  Google Scholar 

  • MĂ¼ller-MoulĂ© P, Conklin PL and Niyogi KK (2002) Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiol 128: 970–977

    Article  PubMed  CAS  Google Scholar 

  • MĂ¼ller-MoulĂ© P, Golan T and Niyogi KK (2004) Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. Plant Physiol 134: 1163–1172

    Article  PubMed  CAS  Google Scholar 

  • MunnĂ©-Bosch S and Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21: 31–57

    Google Scholar 

  • Nishiyama Y, Allakhverdiev SI and Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757: 742–749

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK (2000) Safety valves for photosynthesis. Curr Op Plant Biol 3: 455–460

    Article  CAS  Google Scholar 

  • Niyogi KK, Björkman O and Grossman AR (1997) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci USA 94: 14162–14167

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK, Grossman AR and Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10: 1121–1134

    PubMed  CAS  Google Scholar 

  • Niyogi KK, Shih C, Chow, WS, Pogson BJ, DellaPenna D and Björkman O (2001) Photoprotection in a zeaxanthin- and lutein-deficient double mutant of Arabidopsis. Photosynth Res 67: 139-145

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Arisi ACM, Jouanin L, Kunert KJ, Rennenberg H and Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49: 623–647

    CAS  Google Scholar 

  • Noctor G and Foyer CH (1998) Ascorbate and glutathione: Keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49: 249–279

    Article  CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H and Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53: 1283–1304

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K, Kanematsu S, Takabe K and Asada K (1995) Attachment of CuZn-superoxide dismutase to thylakoid membranes at the site of superoxide generation (PSI) in spinach chloroplasts: detection by immunogold labeling after rapid freezing and substitution method. Plant Cell Physiol 36: 565–573

    CAS  Google Scholar 

  • Okamoto OK, Asano CS, Aidar E and Colepicolo P (1996) Effects of cadmium on growth and superoxide dismutase activity of the marine microalga Tetraselmis gracilis (Prasinophyceae). J Phycol 32: 74–79

    Article  CAS  Google Scholar 

  • Okamoto OK and Colepicolo P (1998) Response of superoxide dismutase to pollutant metal stress in the marine dinoflagellate Gonyaulax polyedra. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 119: 67–73

    Article  PubMed  CAS  Google Scholar 

  • op den Camp RGL, Przybyla D, Ochsenbein C, Laloi C, Kim CH, Danon A, Wagner D, Hideg E, Göbel C, Feussner I, Nater M and Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15: 2320–2332

    Article  PubMed  CAS  Google Scholar 

  • Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J and Mauch F (2007) Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J 49: 159–172

    Article  PubMed  CAS  Google Scholar 

  • Paterson MJ, Christiansen O, Jensen F and Ogilby PR (2006) Overview of theoretical and computational methods applied to the oxygen-organic molecule photosystem. Photochem Photobiol 82: 1136–1160

    Article  PubMed  CAS  Google Scholar 

  • Pogson BJ, Niyogi KK, Björkman O and DellaPenna D (1998) Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc Natl Acad Sci USA 95: 13324–13329

    Article  PubMed  CAS  Google Scholar 

  • Porfirova S, BergmĂ¼ller E, Tropf S, Lemke R and Dörmann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA 99: 12495–12500

    Article  PubMed  CAS  Google Scholar 

  • Prasad TK, Anderson MD and Stewart CR (1994) Acclimation, hydrogen peroxide, and abscisic acid protect mitochondria against irreversible chilling injury in maize seedlings. Plant Physiol 105: 619–627

    PubMed  CAS  Google Scholar 

  • Rady AA, Elsheekh MM and Matkovics B (1994) Temperature shift-induced changes in the antioxidant enzyme system of cyanobacterium Synechocystis PCC 6803. Int J Biochem 26: 433–435

    Article  CAS  Google Scholar 

  • Redmond RW and Kochevar IE (2006) Spatially resolved cellular responses to singlet oxygen. Photochem Photobiol 82: 1178–1186

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N and Jacquot J-P (2005) The plant multigenic family of thiol peroxidases. Free Radic Biol Med 38: 1413–1421

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N and Jacquot JP (2002) Plant peroxiredoxins: alternative hydroperoxide scavenging enzymes. Photosynth Res 74: 259–268

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Lemaire SD and Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Ann Rev Plant Biol 59: 143–166

    Article  CAS  Google Scholar 

  • Ruggeri BA, Gray RJH, Watkins TR and Tomlins RI (1985) Effects of low-temperature acclimation and oxygen stress on tocopherol production in Euglena gracilis. Appl Environ Microbiol 50: 1404–1408

    PubMed  CAS  Google Scholar 

  • Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M and DellaPenna D (2004) Vitamin E is essential for seed longevity, and for preventing lipid peroxidation during germination. Plant Cell 16: 1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T, Takeda T, Yamauchi H, Sano S, Tomizawa K, Yokota A and Shigeoka S (1998) Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts. FEBS Lett 428: 47–51

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N and Wheeler GL (2000) Ascorbic acid in plants: Biosynthesis and function. Crit Rev Plant Sci 19: 267–290

    Article  CAS  Google Scholar 

  • Sonoike K, Kamo M, Hihara Y, Hiyama T and Enami I (1997) The mechanism of the degradation of psaB gene product, one of the photosynthetic reaction center subunits of photosystem I, upon photoinhibition. Photosynth Res 53: 55–63

    Article  CAS  Google Scholar 

  • Sonoike K, Terashima I, Iwaki M and Itoh S (1995) Destruction of photosystem I iron-sulfur centers in leaves of Cucumis sativus by weak illumination at chilling temperatures. FEBS Lett 362: 235–238

    Article  PubMed  CAS  Google Scholar 

  • Stafford JL, Neumann NF and Belosevic M (2002) Macrophage-mediated innate host defense against protozoan parasites. Crit Rev Microbiol 28: 187–248

    Article  PubMed  Google Scholar 

  • Takahashi S and Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13: 178–182

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Otsubo T and Kondo N (1982) Participation of hydrogen-peroxide in the inactivation of calvin cycle SH enzymes in SO2-fumigated spinach leaves. Plant Cell Physiol 23: 1009–1018

    CAS  Google Scholar 

  • Tarantino D, Vannini C, Bracale M, Campa M, Soave C and Murgia I (2005) Antisense reduction of thylakoidal ascorbate peroxidase in Arabidopsis enhances paraquat-induced photooxidative stress and nitric oxide-induced cell death. Planta 221: 757–765

    Article  PubMed  CAS  Google Scholar 

  • Telfer A (2002) What is beta-carotene doing in the photosystem II reaction centre? Phil Trans R Soc Lond B 357: 1431–1439

    Article  CAS  Google Scholar 

  • Trebst A, Depka B and Hollander-Czytko H (2002) A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Lett 516: 156–160

    Article  PubMed  CAS  Google Scholar 

  • Ursini F, Maiorino M, Brigeliusflohe R, Aumann KD, Roveri A, Schomburg D and Flohe L (1995) Diversity of glutathione peroxidases. In Biothiols, Pt B, Vol 252, pp. 38–53

    CAS  Google Scholar 

  • Vanacker H, Carver TLW and Foyer CH (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiol 123: 1289–1300

    Article  PubMed  CAS  Google Scholar 

  • Vartak V and Bhargava S (1999) Photosynthetic performance and antioxidant metabolism in a paraquat-resistant mutant of Chlamydomonas reinhardtii. Pestic Biochem Physiol 64: 9–15

    Article  CAS  Google Scholar 

  • VranovĂ¡ E, InzĂ© D and Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53: 1227–1236

    Article  PubMed  Google Scholar 

  • Wagner D, Przybyla D, op den Camp R, Kim C, Landgraf F, Lee KP, WĂ¼rsch M, Laloi C, Nater M, Hideg E and Apel K (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306: 1183–1185

    Article  PubMed  CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, InzĂ© D and Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C-3 plants. EMBO J 16: 4806–4816

    Article  PubMed  CAS  Google Scholar 

  • Wolosiuk RA and Buchanan BB (1977) Thioredoxin and glutathione regulate photosynthesis in chloroplasts. Nature 266: 565–567

    Article  CAS  Google Scholar 

  • Wong JH, Balmer Y, Cai N, Tanaka CK, Vensel WH, Hurkman WJ and Buchanan BB (2003) Unraveling thioredoxin-linked metabolic processes of cereal starchy endosperm using proteomics. FEBS Lett 547: 151–156

    Article  PubMed  CAS  Google Scholar 

  • Wrona M, Manowska M and Sarna T (2004) Zeaxanthin in combination with ascorbic acid or alpha-tocopherol protects ARPE-19 cells against photosensitized peroxidation of lipids. Free Radic Biol Med 36: 1094–1101

    Article  PubMed  CAS  Google Scholar 

  • Xiang C, Werner BL, Christensen ELM and Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126: 564–574

    Article  PubMed  CAS  Google Scholar 

  • Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T and Shigeoka S (2002) Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J 32: 915–925

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto HY, Bugos RC and Hieber AD (1999) Biochemistry and molecular biology of the xanthophyll cycle. In: Frank HA, Young AJ, Britton G and Cogdel RJ (eds) The Photochemistry of Carotenoids, pp. 293–303. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Yamazaki D, Motohashi K, Kasama T, Hara Y and Hisabori T (2004) Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana. Plant Cell Physiol 45: 18–27

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, Miyasaka H and Shigeoka S (2004) Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J 37: 21–33

    Article  PubMed  CAS  Google Scholar 

  • Zaffagnini M, Michelet L, Massot V, Trost P and Lemaire SD (2008) Biochemical characterization of glutaredoxins from Chlamydomonas reinhardtii reveals the unique properties of a chloroplastic CGFS-type glutaredoxin. J Biol Chem 283: 8868–8876

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (GM058799 and GM071908).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sirikhachornkit, A., Niyogi, K.K. (2010). Chapter 24 Antioxidants and Photo-oxidative Stress Responses in Plants and Algae. In: Rebeiz, C.A., et al. The Chloroplast. Advances in Photosynthesis and Respiration, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8531-3_24

Download citation

Publish with us

Policies and ethics