Skip to main content

A Guided Tour Through Modern Charge Density Analysis

  • Chapter
  • First Online:
Modern Charge-Density Analysis

Abstract

A concise summary is provided on the basic aspects of charge density (CD) analysis and an overview of the charge density research and developments over the last 10 years. A glimpse is given to the issues which are treated in more details in the remaining chapters of this book and to those few that, although of some importance, could not be covered. Advances in experimental methodologies and in the charge density model refinements, along with progresses in quantum mechanical methods and in the interpretation/understanding of chemical bonding and interactions are briefly summarized. The increasingly stronger connection between charge density research and challenging questions of relevance to chemistry and to materials and life science is overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The ½ multiplicative factor in Eq. 1.19 complies with the adopted normalization of ρ2 to the number of distinct electron pairs N(N-1)/2, as used in Parr’s book [36]. In the literature on the exchange-correlation density, the Mc Weeney [8] ρ2 normalization to N(N-1) electron pairs is often adopted. Though somewhat less physically meaningful, such a normalization has undoubtedly some advantages in the derivations of quantities related to ρ2,xc. However, we prefer to retain our initial choice and be consistent with the normalization adopted in Eq. 1.13 throughout all this chapter. Moreover, some authors prefer to precede ρ2,xc by a plus rather than a minus sign in Eq. 1.19 and, within such definition, ρ2,xc will integrate to –N. The different normalization on ρ2 (and the difference in sign for ρ2,xc) have clearly a consequence on some of the formula reported from now on in this section.

  2. 2.

    For instance, ten versions of the Wien-2 k code – one among the most accurate schemes for band structure calculations – have been released during the last decade and a separate version, WIEN-ncm able to handle the case of non collinear magnetism has also appeared.

  3. 3.

    Dirac’s operator is defined in terms of the linear momentum operator and of a 3-vector whose components are (4 × 4) matrices built, on the off diagonal blocks, from Pauli’s spin matrices.

  4. 4.

    ZORA represents another approach for reducing the four-component Dirac equation to an effective two-component form.

  5. 5.

    The fact that apparently contradictory descriptions of bonding may come out when using the bond path criterion or the delocalization index values should not be a source of particular concern, despite both these bonding indicators are defined within QTAIM. Indeed, information from different spaces is being analyzed and complementary information is thus obtained: bond path are made manifest in the 3D position space, whereas delocalization indices are defined in the 6D pair density space, where competition between electron localization within atomic basins and two-center or multi-center electron delocalization is observed and evaluated.

References

  1. Coppens P, Feil D (1991) The past and future of experimental charge density analysis. In: Jeffrey GA, Piniella JF (eds) The application of charge density research to chemistry and drug design, vol 250, NATO ASI series B. Plenum Publishing Corp., New York, pp 7–22

    Google Scholar 

  2. Coppens P (1998) Charge-density analysis at the turn of the century. Acta Crystallogr A 54:779–788

    Google Scholar 

  3. Coppens P, Volkov A (2004) The interplay between experiment and theory in charge-density analysis. Acta Crystallogr A 60:357–364

    Google Scholar 

  4. Coppens P (2005) Charge densities come of age. Angew Chem Int Ed 44:6810–6811

    CAS  Google Scholar 

  5. Coppens P (1997) X-ray charge densities and chemical bonding. IUCr texts on crystallography, vol 4. International Union of Crystallography/Oxford University Press, Oxford

    Google Scholar 

  6. Bader RFW (1990) Atoms in molecules: a quantum theory, vol 22, International series of monographs on chemistry. Oxford Science, Oxford

    Google Scholar 

  7. Matta CF, Boyd RJ (eds) (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinheim

    Google Scholar 

  8. McWeeny R (1989) Methods of molecular quantum mechanics, 2nd edn. Academic, London

    Google Scholar 

  9. Spackman MA (1997) Charge densities from X-ray diffraction data. Annu Rep Progr Chem C Phys Chem 94:177–207

    Google Scholar 

  10. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density functional theory. Phys Rev Lett 55:2471–2474

    CAS  Google Scholar 

  11. Coppens P, Penner-Hahn J (eds) (2001) X-rays in chemistry. (Dedicated issue on) Chem Rev 101(6):1567–1868

    Google Scholar 

  12. Hestenes MR, Stiefel EJ (1952) Methods of conjugate gradients for solving linear systems. Natl Bur Stand USA 49:409–436

    Google Scholar 

  13. Roquette P, Maronna A, Peters A, Kaifer E, Himmel HJ, Hauf C, Herz V, Scheidt EW, Scherer W (2010) On the electronic structure of Ni-II complexes that feature chelating bisguanidine ligands. Chem Eur J 16:1336–1350

    CAS  Google Scholar 

  14. Jayatilaka D, Grimwood DJ (2001) Wavefunctions derived from experiment. I. Motivation and theory. Acta Crystallogr A 57:76–86

    CAS  Google Scholar 

  15. Tanaka K, Makita R, Funahashi S, Komori T, Win Z (2008) X-ray atomic orbital analysis. I. Quantum mechanical and crystallographic framework of the method. Acta Crystallogr B 64:437–449

    Google Scholar 

  16. Figgis BN, Reynolds PA, Williams GA (1980) Spin-density and bonding in the [CoCl4]2- ion in Cs3CoCl5. Part 2. Valence electron-distribution in the CoCl 2-4 ion. J Chem Soc Dalton Trans 12:2339–2347

    Google Scholar 

  17. Figgis BN (2000) Ligand field theory and its applications. Wiley-VCH, New York

    Google Scholar 

  18. Holladay A, Leung PC, Coppens P (1983) Generalized relations between d-orbital cccupancies of transition-metal atoms and electron-density multipole population parameters from X-ray diffraction data. Acta Crystallogr A 39:377–387

    Google Scholar 

  19. Oszlányi G, Sütő A (2008) The charge flipping algorithm. Acta Crystallogr A 64:123–134

    Google Scholar 

  20. Collins DM (1982) Electron density images from imperfect data by iterative entropy maximization. Nature 298:49–51

    CAS  Google Scholar 

  21. Gull SF, Daniell GJ (1978) Image reconstruction from incomplete and noisy data. Nature 272:686–690

    Google Scholar 

  22. Jaynes ET (1968) Prior probabilities. IEEE Trans Syst Sci Cybern SSC-4:227–240

    Google Scholar 

  23. Roversi P, Irwin JJ, Bricogne G (1998) Accurate charge-density studies as an extension of Bayesian crystal structure determination. Acta Crystallogr A 54:971–996

    Google Scholar 

  24. (a) Palatinus L, van Smaalen S (2005) The prior-derived F constraints in the maximum-entropy method. Acta Crystallogr A 61:363–372; (b) van Smaalen S, Netzel J (2009) The maximum entropy method in accurate charge-density studies. Phys Scripta 79:048304

    Google Scholar 

  25. (a) Hofmann A, Netzel J, van Smaalen S (2007) Accurate charge density of trialanine: a comparison of the multipole formalism and the maximum entropy method (MEM). Acta Crystallogr B 63:285–295; (b) Netzel J, van Smaalen S (2009) Topological properties of hydrogen bonds and covalent bonds from charge densities obtained by the maximum entropy method (MEM). Acta Crystallogr B 65:624–638

    Google Scholar 

  26. Cargnoni F, Nishibori E, Rabiller P, Bertini L, Snyder GJ, Christensen M, Gatti C, Iversen BB (2004) Interstitial Zn atoms do the trick in thermoelectric zinc antimonide, Zn4Sb3: a combined maximum entropy method X-ray electron density and ab initio electronic structure study. Chem Eur J 10:3861–3870

    CAS  Google Scholar 

  27. Munshi P, Madsen AØ, Spackman MA, Larsen S, Destro R (2008) Estimated H-atom anisotropic displacement parameters: a comparison between different methods and with neutron diffraction results. Acta Crystallogr A 64:465–475

    Google Scholar 

  28. Johnson CK (1970) Generalized Treatments for Thermal Motion, Chapter 9, pp 132–160. In: Willis BTM (ed) Thermal Neutron Diffraction, Oxford University Press, London, 1970

    Google Scholar 

  29. Madsen AØ (2006) SHADE web server for estimation of hydrogen anisotropic displacement parameters. J Appl Crystallogr 39:757–758

    CAS  Google Scholar 

  30. Hirshfeld FL (1976) Can X-ray data distinguish bonding effects from vibrational smearing? Acta Crystallogr A 32:239–244

    Google Scholar 

  31. Roversi P, Destro M (2004) Approximate anisotropic displacement parameters for H atoms in molecular crystals. Chem Phys Lett 386:472–478

    CAS  Google Scholar 

  32. Madsen AØ, Mason S, Larsen S (2003) A neutron diffraction study of xylitol: derivation of mean square internal vibrations for hydrogen atoms from a rigid-body description. Acta Crystallogr B 59:653–663

    Google Scholar 

  33. Whitten AE, Spackman MA (2006) Anisotropic displacement parameters for H atoms using an ONIOM approach. Acta Crystallogr B 62:875–888

    Google Scholar 

  34. Bürgi HB, Capelli SC (2000) Dynamics of molecules in crystals from multi-temperature anisotropic displacement parameters. I. Theory. Acta Crystallogr A 56:403–412

    Google Scholar 

  35. Szabo A, Ostlund NS (1982) Modern quantum chemistry: introduction to advanced electronic structure theory. Macmillan, New York

    Google Scholar 

  36. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules, vol 16, International series of monographs on chemistry. Oxford Science, Oxford

    Google Scholar 

  37. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133–1138

    Google Scholar 

  38. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  39. Perdew JP, Ruzsinszky A, Constantin LA, Sun J, Csonka GI (2009) Some fundamental issues in ground-state density functional theory: a guide for the perplexed. J Chem Theory Comput 5:902–908

    CAS  Google Scholar 

  40. (a) Ángyán JG, Loos M, Mayer I (1994) Covalent bond orders and atomic valence indices in the topological theory of atoms in molecules. J Phys Chem 98:5244–5248; (b) Fradera X, Austen MA, Bader RFW (1999) The Lewis model & beyond. J Phys Chem A 103:304–314

    Google Scholar 

  41. Poater J, Duran M, Solà M, Silvi B (2005) Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem Rev 105:3911–3947

    CAS  Google Scholar 

  42. Bader RFW, Stephens ME (1974) Fluctuation and correlation of electrons in molecular systems. Chem Phys Lett 26:445–449

    CAS  Google Scholar 

  43. Poater J, Solà M, Duran M, Fradera X (2002) The calculation of electron localization and delocalization indices at the Hartree-Fock, density functional and post-Hartree-Fock levels of theory. Theor Chem Acc 107:362–371

    CAS  Google Scholar 

  44. Matito E, Solà M, Salvador P, Duran M (2007) Electron sharing indexes at the correlated level. Applications to aromaticity calculations. Faraday Discuss 135:325–345

    CAS  Google Scholar 

  45. (a) Ponec R (1997) Electron pairing and chemical bonds. Chemical structure, valences and structural similarities from the analysis of the Fermi holes. J Math Chem 21:323; (b) Ponec R (1998) Electron pairing and chemical bonds. Molecular structure from the analysis of pair densities and related quantities. J Math Chem 23:85–103

    Google Scholar 

  46. Francisco E, Pendás AM, Blanco MA (2009) A connection between domain-averaged Fermi hole orbitals and electron number distribution functions in real space. J Chem Phys 131:124125

    CAS  Google Scholar 

  47. Seitz F (1987) The modern theory of solids. Dover, New York

    Google Scholar 

  48. Yamaguchi Y, Osamura Y, Goddard JD, Schäefer III HF (1994) In A new dimension to quantum chemistry. Analytic derivative methods in Ab initio molecular electronic structure theory. Chapter 2. International series of monographs on chemistry vol 29, Oxford Science Publications, Oxford

    Google Scholar 

  49. Davidson ER (1976) Reduced density matrices in quantum chemistry. Academic, New York

    Google Scholar 

  50. Pilar FL (1968) Elementary quantum chemistry. Mc Graw Hill, New York

    Google Scholar 

  51. Bender CF, Davidson ER (1968) Theoretical study of the LiH molecule. J Chem Phys 49:4222–4229

    CAS  Google Scholar 

  52. Gatti C, MacDougall PJ, Bader RFW (1988) Effect of electron correlation on the topological properties of molecular charge distributions. J Chem Phys 88:3792–3804

    CAS  Google Scholar 

  53. (a) Wang L-C, Boyd RJ (1989) The effect of electron correlation on the electron density distributions of molecules: comparison of perturbation and configuration interaction methods. J Chem Phys 90:1083–1090; (b) Boyd RJ, Wang L-C (1989) The effect of electron correlation on the topological and atomic properties of the electron density distributions of molecules. J Comp Chem10:367–375

    Google Scholar 

  54. Wiberg KB, Hadad CM, LePage TJ, Breneman CM, Frisch MJ (1992) Analysis of the effect of electron correlation on charge density distributions. J Phys Chem 96:671–679

    CAS  Google Scholar 

  55. Mayer I, Salvador P (2004) Overlap populations, bond orders and valences for “fuzzy” atoms. Chem Phys Lett 383:368–375

    CAS  Google Scholar 

  56. Gatti C, Lasi D (2007) Source function description of metal-metal bonding in d-block organometallic compounds. Faraday Discuss 135:55–78

    CAS  Google Scholar 

  57. Stewart RF (1979) On the mapping of electrostatic properties from Bragg diffraction data. Chem Phys Lett 65:335–342

    CAS  Google Scholar 

  58. (a) Stewart RF (1982) Mapping electrostatic potentials from diffraction data. God Jugosl Cent Kristalogr 17:1–24; (b) Stewart RF, Craven BM (1993) Molecular electrostatic potentials from crystal diffraction – the neurotransmitter gamma-aminobutyric-acid. Biophys J 65: 998–1005; (c) Stewart RF (1991) Electrostatic properties of molecules from diffraction data. In: Jeffrey GA, Piniella JF (eds) The application of charge density research to chemistry and drug design, NATO ASI Series B, vol 250. Plenum Publishing Corp., New York, pp 63–101

    Google Scholar 

  59. Spackman MA (2007) Comment on On the calculation of the electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model by Volkov, King, Coppens & Farrugia. Acta Crystallogr A 63:198–200

    Google Scholar 

  60. Su Z, Coppens P (1992) On the mapping of electrostatic properties from the multipole description of the charge density. Acta Crystallogr A 48:188–197

    Google Scholar 

  61. Volkov A, Coppens P (2007) Response to Spackman’s comment on On the calculation of the electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model. Acta Crystallogr A 63:201–203

    Google Scholar 

  62. Volkov A, King HF, Coppens P, Farrugia LJ (2006) On the calculation of the electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model. Acta Crystallogr 62:400–408

    Google Scholar 

  63. Koritsanszky T, Coppens P (2001) Chemical applications of X-ray charge density analysis. Chem Rev 101:1583–1627

    CAS  Google Scholar 

  64. Schiøtt B, Overgaard J, Larsen FK, Iversen BB (2004) Testing theory beyond molecular structure: electron density distributions of complex molecules. Int J Quantum Chem 96:23–31

    Google Scholar 

  65. Buckingham AD (1967) Permanent and induced molecular moments and long-range intermolecular forces. Adv Chem Phys 12:107–142

    CAS  Google Scholar 

  66. (a) Spackman MA (1986) Atom-atom potential via electron gas theory. J Chem Phys 85:6579–6586; (b) Spackman MA (1986) A simple quantitative model of hydrogen bonding. J Chem Phys 85:6587–6601; (c) Spackman MA (1987) A simple quantitative model of hydrogen bonding. Application to more complex systems. J Phys Chem 91:3179–3186

    Google Scholar 

  67. Spackman MA (2005) The use of promolecular density to approximate the penetration contribution to intermolecular energies. Chem Phys Lett 418:158–162

    Google Scholar 

  68. Volkov A, Koritsanszky T, Coppens P (2004) Combination of the exact potential and multipole methods (EP/MM) for evaluation of intermolecular electrostatic interaction energies with pseudoatom representation of molecular electron densities. Chem Phys Lett 391:170–175

    CAS  Google Scholar 

  69. Gavezzotti A (2002) Calculation of intermolecular interaction energies by direct numerical integration over electron densities. I. Electrostatic and polarization energies in molecular crystals. J Phys Chem 106:4145–4154

    CAS  Google Scholar 

  70. Volkov A, Li X, Koritsanszky T, Coppens P (2004) Ab Initio quality electrostatic atomic and molecular properties including intermolecular energies from a transferable theoretical pseudoatom databank. J Phys Chem A 108:4283–4300

    CAS  Google Scholar 

  71. Volkov A, Coppens P (2004) Calculation of electrostatic interaction energies in molecular dimers from atomic multipole moments obtained by different methods of electron density partitioning. J Comput Chem 25:921–934

    CAS  Google Scholar 

  72. Pichon-Pesme V, Jelsch C, Guillot B, Lecomte C (2004) A comparison between experimental and theoretical aspherical-atom scattering factors for charge-density refinement of large molecules. Acta Crystallogr A 60:204–208

    Google Scholar 

  73. Volkov A, Koritsanszky T, Li X, Coppens P (2004) Response to the paper “A comparison between experimental and theoretical aspherical-atom scattering factors for charge-density refinement of large molecules”, by Pichon-Pesme, Jelsch, Guillot & Lecomte (2004). Acta Crystallogr A 60:638–639

    Google Scholar 

  74. Dominiak PM, Volkov A, Li X, Messerschmidt M, Coppens P (2007) A theoretical databank of transferable aspherical atoms and its application to electrostatic interaction energy calculations of macromolecules. J Chem Theory Comput 3:232–247

    CAS  Google Scholar 

  75. Dittrich B, Koritsanszky T, Luger P (2004) A simple approach to non-spherical electron densities by using invarioms. Angew Chem Int Ed Engl 43:2718–2721

    CAS  Google Scholar 

  76. Dittrich B, Hübschle CB, Luger P, Spackman MA (2006) Introduction and validation of an invariom database for amino-acid, peptide and protein molecules. Acta Crystallogr D 62:1325–1335

    CAS  Google Scholar 

  77. Jensen F (2007) Introduction to computational chemistry, 2nd edn. Wiley, Chichester

    Google Scholar 

  78. Volkov A, Abramov Y, Coppens P, Gatti C (2000) On the origin of topological differences between experimemtal and theoretical crystal charge densities. Acta Crystallogr A 56: 332–339

    Google Scholar 

  79. Volkov A, Gatti C, Abramov Y, Coppens P (2000) Evaluation of net atomic charges and atomic and molecular electrostatic moments through topological analysis of the experimental charge density. Acta Crystallogr A 56:252–258

    Google Scholar 

  80. Farrugia LJ, Cameron E (2009) The QTAIM approach to chemical bonding between transition metals and carbocyclic rings: a combined experimental and theoretical study of (η 5-C5H5)Mn(CO)3, (η 6-C6H6)Cr(CO)3, and (E)-{(η 5-C5H4)CF-CF(η 5-C5H4)}(η 5-C5H5)2Fe2. J Am Chem Soc 131:1251–1268

    CAS  Google Scholar 

  81. (a) Te Velde G, Bickelhaupt FM, van Gisbergen SJA, Fonseca Guerra C, Baerends EJ, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967; (b) ADF2007.01, SCM, (2007) Theoretical chemistry, Vrije Universiteit, Amsterdam. http://www.scm.com

    Google Scholar 

  82. Macchi P, Coppens P (2001) Relativistic analytical wave functions and scattering factors for neutral atoms beyond Kr and for all chemically important ions up to I. Acta Crystallogr A 57:656–662

    CAS  Google Scholar 

  83. Volkov A, Macchi P, Farrugia LJ, Gatti C, Mallinson P, Richter T, Koritsanszky T (2006) XD2006 – a computer program package for multipole refinement, topological analysis of charge densities and evaluation of intermolecular energies from experimental and theoretical structure factors

    Google Scholar 

  84. Krijn MPCM, Graafsma H, Feil D (1988) The influence of intermolecular interactions on the electron-density distribution. A comparison of experimental and theoretical results for -oxalic acid dehydrate. Acta Crystallogr B 44:609–616

    Google Scholar 

  85. Spackman MA, Byron PG, Alfredsson M, Hermansson K (1999) Influence of intermolecular interactions on multipole-refined electron densities. Acta Crystallogr A 55:30–47

    Google Scholar 

  86. de Vries RY, Feil D, Tsirelson VG (2000) Extracting charge density distributions from diffraction data: a model study on urea. Acta Crystallogr B 56:118–123

    Google Scholar 

  87. Dittrich B, Spackman MA (2007) Can the interaction density be measured? The example of the non-standard amino acid sarcosine. Acta Crystallogr A 63:426–436

    CAS  Google Scholar 

  88. Spackman MA, Munshi P, Dittrich B (2007) Dipole moment enhancement in molecular crystals from X-ray diffraction data. Chemphyschem 8:2051–2063

    CAS  Google Scholar 

  89. Gatti C, May E, Destro R, Cargnoni F (2002) Fundamental properties and nature of CH··O interactions in crystals on the basis of experimental and theoretical charge densities. The case of 3,4-Bis(dimethylamino)-3-cyclobutene-1,2-dione (DMACB) crystal. J Phys Chem A 106:2707–2720

    CAS  Google Scholar 

  90. Gatti C, Saunders VR, Roetti C (1994) Crystal field effects on the topological properties of the electron density in molecular crystals: the case of urea. J Chem Phys 101:10686–10696

    CAS  Google Scholar 

  91. Gatti C (2005) Chemical bonding in crystals: new directions. Z Krist 220:399–457

    CAS  Google Scholar 

  92. Gatti C, Silvi B, Colonna F (1995) Dipole moment of the water molecule in the condensed phase: a periodic Hartree-Fock estimate. Chem Phys Lett 247:135–141

    CAS  Google Scholar 

  93. May E, Destro R, Gatti C (2001) The unexpected and large enhancement of the dipole moment in the 3,4-Bis(dimethylamino)-3-cyclobutene-1,2-dione (DMACB) molecule upon crystallization: a new role of the intermolecular CH–-O interactions. J Am Chem Soc 123:12248–12254

    CAS  Google Scholar 

  94. Whitten AE, Jayatilaka D, Spackman MA (2006) Effective molecular polarizabilities and crystal refractive indices estimated from X-ray diffraction data. J Chem Phys 125:174505

    Google Scholar 

  95. Elliott S (1998) The physics and chemistry of solids. Wiley, Chichester

    Google Scholar 

  96. Bertini L, Cargnoni F, Gatti C (2007) Chemical insight from electron density and wavefunctions: software developments and applications to crystals, molecular complexes and materials science. Theor Chem Acc 117:847–884

    CAS  Google Scholar 

  97. Bertini L, Cargnoni F, Gatti C (2006) A chemical approach to the first-principles modeling of novel thermoelectric materials, chapter 7. In: Rowe DM (ed) Thermoelectrics handbook: macro to nano. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  98. (a) Schwarz WHE, Valtzanos P, Ruedenberg K (1985) Electron difference densities and chemical bonding. Theor Chim Acta 68:471–506; (b) Schwarz WHE, Mensching L, Valtzanos P, Von Niessen W (1986) A chemically useful definition of electron difference densities. Int J Quant Chem 29:909–914; (c) Ruedenberg K, Schwarz WHE (1990) Nonspherical atomic ground-state densities and chemical deformation densities from x-ray scattering. J Chem Phys 92:4956–4969; (d) Wiberg KB, Bader RFW, Lau CDH (1987) Theoretical analysis of hydrocarbon properties. 1. Bonds, structures, charge concentrations, and charge relaxations. J Am Chem Soc 109:985–1001

    Google Scholar 

  99. Macchi P, Sironi A (2003) Chemical bonding in transition metal carbonyl clusters: complementary analysis of theoretical and experimental electron densities. Coord Chem Rev 238–239:383–412

    Google Scholar 

  100. Gatti C (2007) Solid state applications of QTAIM and the source function - molecular crystals, surfaces, host-guest systems and molecular complexes, chapter 7. In: Matta CF, Boyd RJ (eds) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinheim

    Google Scholar 

  101. Macchi P (2009) Electron density distribution in organometallic materials. Chimia 63:1–6

    Google Scholar 

  102. Tsirelson VG, Ozerov RP (1996) Electron density and bonding in crystals. Institute of Physics Publishing, Bristol

    Google Scholar 

  103. Schmider H, Edgecombe KE, Smith VH Jr, Weyrich W (1992) One-particle density matrices along the molecular-bonds in linear molecules. J Chem Phys 96:8411–8419

    CAS  Google Scholar 

  104. Asthalter T, Weyrich W (1997) On the chemical interpretation of the one-electron density matrix of some ionic solids: LiH, LiF, and LiFHF. Ber Bunsenges Phys Chem 101:11–22

    CAS  Google Scholar 

  105. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403

    CAS  Google Scholar 

  106. Kohout M (2004) A measure of electron localizability. Int J Quantum Chem 97:651–658

    CAS  Google Scholar 

  107. Schmider HL, Becke AD (2000) Chemical content of the kinetic energy density. J Mol Struct (Theochem) 527:51–61

    CAS  Google Scholar 

  108. Jayatilaka D, Grimwood J (2004) Electron localization functions obtained from X-ray constrained Hartree-Fock wavefunctions for molecular crystals of ammonia, urea and alloxan. Acta Crystallogr A 60:111–119

    Google Scholar 

  109. Grabowsky S, Jayatilaka D, Mebs S, Luger P (2010) The electron localizability indicator from X-ray diffraction data—a first application to a series of epoxide derivatives. Chem Eur J 16:12818–12821

    CAS  Google Scholar 

  110. Abramov YA (1997) On the possibility of kinetic energy density evaluation from the experimental electron-density distribution. Acta Crystallogr A 53:264–272

    Google Scholar 

  111. Tsirelson VG (2002) The mapping of electronic energy distributions using experimental electron density. Acta Crystallogr B 58:632–639

    Google Scholar 

  112. Tsirelson V, Stash A (2002) Determination of the electron localization function from electron density. Chem Phys Lett 351:142–148

    CAS  Google Scholar 

  113. Tsirelson V, Stash A (2002) Analyzing experimental electron density with the localized-orbital locator. Acta Crystallogr B 58:780–785

    Google Scholar 

  114. Bader RFW, Essén H (1984) The characterization of atomic interactions. J Chem Phys 80:1943–1960

    CAS  Google Scholar 

  115. Hoffmann R (1988) Solids and surfaces. A chemist’s view of bonding in extended structures. VCH Publishers, Inc., New York

    Google Scholar 

  116. Dronskowski R, Blöchl PE (1993) Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J Phys Chem 97:8617–8624

    CAS  Google Scholar 

  117. Wannier GH (1937) The structure of electronic excitation levels in insulating crystals. Phys Rev 52:191–197

    CAS  Google Scholar 

  118. Marzari N, Vanderbilt D (1997) Maximally localized generalized Wannier functions for composite energy bands. Phys Rev B 56:12847–12865

    CAS  Google Scholar 

  119. (a) Zicovich-Wilson CM, Dovesi R, Saunders VR (2001) A general method to obtain well localized Wannier functions for composite energy bands in linear combination of atomic orbital periodic calculations. J Chem Phys 115:9708–9719; (b) Casassa S, Zicovich-Wilson CM, Pisani C (2006) Symmetry-adapted localized Wannier functions suitable for periodic calculations. Theor Chem Acc 116:726–733

    Google Scholar 

  120. Gatti C, Bertini L, Blake NP, Iversen BB (2003) Guest-framework interaction in type I inorganic clathrates with promising thermoelectric properties: on the ionic versus neutral nature of the alkaline-earth metal guest A in A8Ga16Ge30 (A = Sr, Ba). Chem Eur J 9:4556–4568

    CAS  Google Scholar 

  121. Oganov AR, Chen J, Gatti C, Ma YZ, Ma YM, Glass CW, Liu Z, Yu T, Kurakevych OO, Solozhenko VL (2009) Ionic high-pressure form of elemental boron. Nature 457:863–868

    CAS  Google Scholar 

  122. Vogt C, Hoffmann R-D, Rodewald UC, Eickerling G, Presnitz M, Eyert V, Scherer W, Pöttgen R (2009) High- and low-temperature modifications of Sc3RuC4 and Sc3OsC4 -relativistic effects, structure, and chemical bonding. Inorg Chem 48:6436–6451

    CAS  Google Scholar 

  123. Debye P (1915) Dispersion of Röntgen rays. Ann Phys 46:809–823

    CAS  Google Scholar 

  124. (a) Macchi P, Proserpio DM, Sironi A (1998) Experimental electron density studies for investigating the metal pi-ligand bond: the case of bis(1,5-cyclooctadiene)nickel. J Am Chem Soc 120:1447–1455; (b) Koritsanszky T, Flaig R, Zobel D, Krane HG, Morgenroth W, Luger P (1998) Accurate experimental electronic properties of DL-proline monohydrate obtained within 1 day. Science 279:356–358

    Google Scholar 

  125. (a) Zhurov VV, Zhurova EA, Pinkerton AA (2008) Optimization and evaluation of data quality for charge density studies. J Appl Cryst 41:340–349; (b) Zhurova EA, Zhurov VV, Pinkerton AA (2007) Structure and bonding in beta-HMX-characterization of a trans-annular N—N interaction. J Am Chem Soc 129:13887–13893

    Google Scholar 

  126. (a) Martin A, Pinkerton AA (1998) Charge density studies using CCD detectors: oxalic acid at 100 K revisited. Acta Cryst B54:471–477; (b) Macchi P, Proserpio DM, Sironi A, Soave R, Destro R (1998) A test of the suitability of CCD area detectors for accurate electron-density studies. J Appl Crystallogr 31:583–588

    Google Scholar 

  127. (a) Blessing RH (1987) Data reduction and error analysis for accurate single crystal diffraction intensities. Crystallogr Rev 1:3–58; (b) Blessing RH (1995) An empirical correction for absorption anisotropy. Acta Crystallogr A 51:33–38

    Google Scholar 

  128. Lenstra ATH, Kataeva ON (2001) Structures of copper(II) and manganese(II) di(hydrogen malonate) dihydrate; effects of intensity profile truncation and background modelling on structure models. Acta Crystallogr B 57:497–506; (b) Lenstra ATH, Van Loock JFJ, Rousseau B, Maes ST (2001) Systematic intensity errors caused by spectral truncation: origin and remedy. Acta Crystallogr A 57:629–641; (c) Rousseau B, Maes ST, Lenstra ATH (2000) Systematic intensity errors and model imperfection as the consequence of spectral truncation. Acta Crystallogr A 56:300–307; (d) Destro R, Marsh RE (1987) Scan-truncation corrections in single-crystal diffractometry – an empirical-method. Acta Crystallogr A 43:711–718; (e) Destro R (1988) Experimental-determination of scan-truncation losses from low-temperature (16-K) single-crystal x-ray measurements. Aust J Phys 41:503–510; (c) Destro R, Marsh RE (1993) On predicting scan profiles – the nature of the aberration function. Acta Crystallogr A 49:183–190

    Google Scholar 

  129. Schulz T, Meindl K, Leusser D, Stern D, Graf J, Michaelsen C, Ruf M, Sheldrick GM, Stalke D (2009) A comparison of a microfocus X-ray source and a conventional sealed tube for crystal structure determination. J Appl Crystallogr 42:885–891

    CAS  Google Scholar 

  130. Macchi P, Bürgi H-B, Chimpri AS, Hauser J, Gál Z (2011) Low energy contamination of Mo micro-source X-ray radiation: analysis and solution of the problem. J Appl Cryst 44:763–771

    Google Scholar 

  131. Jauch W, Reehius M, Schultz AJ (2004) γ-ray and neutron diffraction studies of CoF2: magnetostriction, electron density and magnetic moments. Acta Crystallogr A 60:51–57

    CAS  Google Scholar 

  132. Larsen FK (1995) Diffraction studies of crystals at low temperatures - crystallography below 77 K. Acta Crystallogr B 51:468–482

    Google Scholar 

  133. Johnson CK (1969) Addition of higher cumulants to the crystallographic structure-factor equation: a generalized treatment for thermal-motion effects. Acta Crystallogr A 25:187–194

    CAS  Google Scholar 

  134. Mallinson PR, Koritsanszky T, Elkaim E, Li N, Coppens P (1988) The Gram-Charlier and multipole expansions in accurate X-ray diffraction studies: can they be distinguished? Acta Crystallogr A 44:336–343

    Google Scholar 

  135. Roversi P, Barzaghi M, Merati F, Destro R (1996) Charge density in crystalline citrinin from X-ray diffraction at 19 K. Can J Chem 74:1145–1161

    CAS  Google Scholar 

  136. (a) Makita R, Tanaka K, Onuki Y (2008) 5d and 4f electron configuration of CeB6 at 340 and 535 K. Acta Crystallogr B 64:534–549; (b) Tanaka K, Onuki Y (2002) Observation of 4f electron transfer from Ce to B6 in the Kondo crystal CeB6 and its mechanism by multi-temperature X-ray diffraction. Acta Crystallogr B 58:423–436; Funahashi S, Tanaka K, Iga F (2010) X-ray atomic orbital analysis of 4f and 5d electron configuration of SmB6 at 100, 165, 230, 298 K. Acta Crystallogr B 66:292–306

    Google Scholar 

  137. (a) Stewart RF, Bentley J, Goodman B (1975) Generalized X-ray scattering factors in diatomic molecules. J Chem Phys 63:3786–3793; (b) Kurki-Suonio K (1977) Charge density deformation models. Isr J Chem 16:115–123

    Google Scholar 

  138. Hansen NK, Coppens P (1978) Electron population analysis of accurate diffraction data. 6. Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr A 34: 909–921

    Google Scholar 

  139. Clementi E, Roetti C (1974) “Tables of Roothaan-Hartree-Fock wavefunctions”, special issue in atomic data and nuclear data table. Academic, New York

    Google Scholar 

  140. Su Z, Coppens P (1998) Nonlinear least-squares fitting of numerical relativistic atomic wave functions by a linear combination of Slater-type functions for atoms with Z = 1–36. Acta Crystallogr A 54:646–652

    Google Scholar 

  141. Clementi E, Raimondi DL (1963) Atomic screening constants from SCF functions. J Chem Phys 38:2686–2689

    CAS  Google Scholar 

  142. Iversen BB, Larsen FK, Figgis BN, Reynolds PA (1997) X-ray–neutron diffraction study of the electron-density distribution in trans-tetraaminedinitronickel(II) at 9 K: transition-metal bonding and topological analysis. J Chem Soc Dalton Trans 2227–2240

    Google Scholar 

  143. Volkov A, Coppens P (2001) Critical examination of the radial functions in the Hansen-Coppens multipole model through topological analysis of primary and refined theoretical densities. Acta Crystallogr A 57:395–405

    CAS  Google Scholar 

  144. (a) MOLLY, See ref. 138; (b) Stewart RF, Spackman MA, Flensburg C (2000) VALRAY – User’s manual, 2.1 edn. Carnegie Mellon University/University of Copenhagen, Pittsburgh/Denmark; (c) Petricek V, Dusek M, Palatinus L (2006) JANA2006, Structure determination software programs. Institute of Physics, Praha; (d) Jelsch C, Guillot B, Lagoutte L, Lecomte C (2005) Advances in proteins and small molecules. Charge density refinement methods using software MoPro. J Appl Crystallogr 38:38–54

    Google Scholar 

  145. Ghermani NE, Bouhmaida N, Lecomte C (1992) ELECTROS: computer program to calculate electrostatic properties from high resolution X-ray diffraction. Universite´ de Nancy I, France

    Google Scholar 

  146. Tsirelson V, Stasch A (2002) WinXPRO: a program for calculating crystal and molecular properties using multipole parameters of the electron density. J Appl Crystallogr 35:371–373

    Google Scholar 

  147. Evarestov RA (2007) Quantum chemistry of solids. The LCAO first principle treatment of crystals. Springer, Berlin

    Google Scholar 

  148. Bredow T, Dronskowski R, Ebert H, Jug K (2009) Theory and computer simulation of perfect and defective solids. Prog Solid State Chem 37:70–80

    CAS  Google Scholar 

  149. Oganov AR (2005) Dedicated issue on computational crystallography. Z Krist 220:399–585

    Google Scholar 

  150. Dovesi R, Orlando R, Civalleri B, Roetti C, Saunders VR, Zicovich-Wilson CM (2005) CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals. Z Krist 220:571–573

    CAS  Google Scholar 

  151. Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco Ph, Llunell M (2009) CRYSTAL09 user’s manual, Università di Torino, Torino. http://www.CRYSTAL.unito.it

  152. (a) Blaha P, Schwarz K, Madsen G, Kvasnicka D, Luitz J (2010) WIEN2k (current version WIEN2k_10.1), Institute für Materials Chemistry, TU Vienna. http://www.wien2k.at/; (b) Laskowski R (2008) WIENncm: a non-collinear magnetism version of WIEN2k. http://www.wien2k.at/reg_user/ncm/

  153. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, Fabris S, FratesiG, de Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia S, Scandolo C, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21, 395502 (19 pp). http://www.quantumespresso.org/

  154. Baroni S, Giannozzi P, Testa A (1987) Green’s-function approach to linear response in solids. Phys Rev Lett 58:1861–1864; Gonze X, Vigneron J-P (1989) Density-functional approach to non-linear-response coefficients of solids. Phys Rev B 49:13120–13128; (c) Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562

    Google Scholar 

  155. Gonze X, Rignanese G-M, Caracas R (2005) First principle studies of the lattice dynamic of crystals, and related properties. Z Krist 220:458–472

    CAS  Google Scholar 

  156. Gonze X, Rignanese G-M, Verstraete M, Beuken J-M, Pouillon Y, Caracas R, Jollet F, Torrent M, Zerah G, Mikami M, Ghosez P, Veithen M, Raty J-Y, Olevano V, Bruneval F, Reining L, Godby R, Onida G, Hamann DR, Allan DC (2005) A brief introduction to the ABINIT software package. Z Krist 220:558–562

    CAS  Google Scholar 

  157. Gerratt J, Mills I (1968) Force constants and dipole-moment derivatives of molecules from perturbed Hartree-Fock calculations. I. J Chem Phys 49:1719–1729

    Google Scholar 

  158. a) Ferrero M, Rérat M, Kirtman B, Dovesi R (2008) Calculation of first and second static hyperpolarizabilities of one- to three-dimensional periodic compounds. Implementation in the CRYSTAL code. J Chem Phys 129:244100; (b) Ferrero M, Rérat M, Orlando R, Dovesi R (2008) The calculation of static polarizabilities of 1-3D periodic compounds. The implementation in the crystal code. J Comp Chem 29:1450–1459

    Google Scholar 

  159. Reiher M, Wolf A (2009) Relativistic quantum theory: the fundamental theory of molecular science. Wiley-VCH Verlag Gmb&Co. KGaA, Weinheim

    Google Scholar 

  160. Voloshina E, Paulus B (2006) On the application of the incremental scheme to ionic solids: test of different embeddings. Theor Chem Acc 114:259–264

    Google Scholar 

  161. Wesolowski TA, Warshel A (1993) Frozen density functional approach for ab initio calculations of solvated molecules. J Phys Chem 97:8050

    CAS  Google Scholar 

  162. Burow A, Sierka M, Döbler J, Sauer J (2009) Point defects in CaF2 and CeO2 investigated by the periodic electrostatic embedded cluster method. J Chem Phys 130:174710

    Google Scholar 

  163. (a) Kiewisch K, Eickerling G, Reiher M, Neugebauer J (2008) Topological analysis of electron densities from Kohn-Sham and subsystem density functional theory. J Chem Phys 128:044114; (b) Fux S, Kiewisch K, Jacob CR, Neugebauer J, Reiher M (2008) Analysis of electron density distributions from subsystem density functional theory applied to coordination bonds. Chem Phys Lett 461:353–359

    Google Scholar 

  164. Götz K, Meier F, Gatti C, Burow AM, Sierka M, Sauer J, Kaupp M (2010) Modeling environmental effects on charge density distributions in polar crganometallics: validation of embedded cluster models for the methyl lithium crystal. J Comp Chem 31:2568–2576

    Google Scholar 

  165. Tiana D, Fancisco E, Blanco MA, Martín Pendás A (2009) Using pseudopotential within the interacting quantum atoms approach. J Phys Chem A 113:7963–7971

    CAS  Google Scholar 

  166. Eickerling G, Mastalerz R, Herz V, Scherer W, Himmel H-J, Reiher M (2007) Relativistic effects on the topology of the electron density. J Chem Theory Comput 3:2182–2197

    CAS  Google Scholar 

  167. Eickerling G, Reiher M (2008) The shell structure of atoms. J Chem Theory Comput 4: 286–296

    CAS  Google Scholar 

  168. Hudák M, Jayatilaka D, Perašínová L, Biskupič S, Kožíšek J, Bučinský L (2010) X-ray constrained unrestricted Hartree–Fock and Douglas–Kroll–Hess wavefunctions. Acta Crystallogr A 66:78–92

    Google Scholar 

  169. Ponec R, Bučinský L, Gatti C (2010) Relativistic effects of metal-metal bonding: comparison of the performance of ECP and scalar DKH Description on the picture of metal-metal bonding in Re2Cl 2-8 . J Chem Theory Comput 6:3113–3121

    CAS  Google Scholar 

  170. (a) Douglas M, Kroll NM (1974) Quantum electrodynamical corrections to fine-structure of helium. Ann Phys 82:89–155; (b) Hess BA (1986) Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys Rev A 33:3742–3748; (c) Wolf A, Reiher M, Hess BA (2002) The generalized Douglas-Kroll transformation. J Chem Phys 117:9215–9226

    Google Scholar 

  171. (a) Chang C, Pelissier M, Durand P (1986) Regular two-component Pauli-like effective hamiltonians in Dirac theory. Phys Scr 34:394–404; (b) van Lenthe E, Baerends E-J, Snijders JG (1993) Relativistic regular two-component Hamiltonians. J Chem Phys 99:4597–4610; (c) van Lenthe E, Baerends E-J, Snijders JG (1994) Relativistic total energy using regular approximations. J Chem Phys 101:9783–9792

    Google Scholar 

  172. Wu ZG, Cohen RE (2006) More accurate generalized gradient approximation for solids. Phys Rev B 73:235116

    Google Scholar 

  173. Perdew JP, Ruzsinszky A (2010) Density functional theory of electronic structure: a short course for mineralogists and geophysicists. Rev Miner Geochem 71:1–18

    CAS  Google Scholar 

  174. Csonka GI, Vydrov OA, Scuseria GE, Ruzsinszky A, Perdew JP (2007) Diminished gradient dependence of density functionals: constraint satisfaction and self-interaction correction. J Chem Phys 126:244107

    Google Scholar 

  175. Perdew JP, Ruzsinszky A, Tao J, Csonka GI, Constantin LA, Zhou X, Vydrov OA, Scuseria GE, Burke K (2008) Restoring the gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406

    Google Scholar 

  176. Zhao Y, Truhlar DG (2008) Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb-Oxford bond. J Chem Phys 128:184109

    Google Scholar 

  177. Csonka GI, Perdew JP, Ruzsinszky A, Philipsen PHT, Lebegue S, Paier J, Vydrov OA, Angyan JG (2009) Assessing the performance of recent density functional for solids. Phys Rev B 79:155107

    Google Scholar 

  178. Zhao Y, Truhlar DG (2010) The Minnesota density functionals and their applications to problems in mineralogy and geochemistry. Rev Miner Geochem 71:19–37

    CAS  Google Scholar 

  179. Oganov AR, Glass CW (2006) Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J Chem Phys 124:244704

    Google Scholar 

  180. Oganov AR, Ma Y, Lyakhov AO, Valle M, Gatti C (2010) Evolutionary crystal structure prediction as a method for the discovery of minerals and materials. Rev Miner Geochem 71:271–298

    CAS  Google Scholar 

  181. Blanco MA, Martín Pendás A, Francisco E (2005) Interacting quantum atoms: a correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J Chem Theory Comput 1:1096–1109

    CAS  Google Scholar 

  182. Martín Pendás A, Francisco E, Blanco MA (2007) An electron number distribution view of chemical bonds in real space. Phys Chem Chem Phys 9:1087–1092

    Google Scholar 

  183. Kohout M (2007) Bonding indicators from electron pair density functionals. Faraday Discuss 135:43–54

    CAS  Google Scholar 

  184. (a) Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102:7314–7323; (b) Bader RFW (2009) Bond paths are not chemical bonds. J Phys Chem A 113:10391–10396; (c) Bader RFW (2010) Bond definition of molecular structure: by choice or by appeal to observation? J Phys Chem A 114:7431–7444

    Google Scholar 

  185. (a) Poater J, Sola M, Bickelhaupt FM (2006) Hydrogen–hydrogen bonding in planar biphenyl, predicted by atoms-in-molecules theory, does not exist. Chem Eur J 12:2889–2895; (b) Poater J, Sola M, Bickelhaupt FM (2006) A model of the chemical bond must be rooted in quantum mechanics, provide insight, and possess predictive power. Chem Eur J 12:2902–2905

    Google Scholar 

  186. Haaland A, Shorokhov DJ, Tverdova NV (2004) Topological analysis of electron densities: is the presence of an atomic interaction line in an equilibrium geometry a sufficient condition for the existence of a chemical bond? Chem Eur J 10:4416–4421

    CAS  Google Scholar 

  187. Grimme S, Mück-Lichtenfeld C, Erker G, Kehr G, Wang H, Beckers H, Willner H (2009) When do interacting atoms form a chemical bond? Spectroscopic measurements and theoretical analyses of dideuteriophenantrene. Angew Chem Int Ed 48:2592–2595

    CAS  Google Scholar 

  188. Cioslowski J, Mixon ST (1992) Topological properties of electron density in search of steric interactions in molecules: electronic structure calculations on ortho-substituted biphenyls. J Am Chem Soc 114:4382–4387

    CAS  Google Scholar 

  189. Farrugia LJ, Evans C, Tegel M (2006) Chemical bonds without “chemical bonding”? A combined experimental and theoretical charge density study on an iron trimethylenemethane complex. J Phys Chem A 110:7952–7961

    CAS  Google Scholar 

  190. Bader RFW (2006) Pauli Repulsions exist only in the eye of the beholder. Chem Eur J 12:2896–2901

    CAS  Google Scholar 

  191. Pendás AM, Francisco E, Blanco MA, Gatti C (2007) Bond paths as privileged exchange channels. Chem Eur J 12:9362–9371

    Google Scholar 

  192. Reinhold J, Kluge O, Mealli C (2007) Integration of electron density and molecular orbital techniques to reveal questionable bonds: the test case of the direct Fe−Fe bond in Fe2(CO)9. Inorg Chem 46:7142–7147

    CAS  Google Scholar 

  193. Ponec R, Gatti C (2009) Do the structural changes defined by the electron density topology necessarily affect the picture of the bonding? Inorg Chem 48:11024–11031

    CAS  Google Scholar 

  194. Macchi P, Garlaschelli L, Sironi A (2002) Electron density of semi-bridging carbonyls. Metamorphosis of CO ligands observed via experimental and theoretical investigations on [FeCo(CO)8]-. J Am Chem Soc 124:14173–14184

    Google Scholar 

  195. Bader RFW, Fang D-C, Properties of atoms in molecules: caged atoms and the Ehrenfest force. J Chem Theory Comput 1:403–414

    Google Scholar 

  196. Ponec R, Roithová J (2001) Domain-averaged Fermi holes - a new means of visualization of chemical bonds. Bonding in hypervalent molecules. Theor Chem Acc 105:383–392

    CAS  Google Scholar 

  197. Ponec R, Duben AJ (1999) Electron pairing and chemical bonds: bonding in hypervalent molecules from analysis of Fermi holes. J Comput Chem 20:760–771

    CAS  Google Scholar 

  198. Ponec R, Cooper DL, Savin A (2008) Analytic models of domain-averaged Fermi holes: a new tool for the study of the nature of chemical bonds. Chem Eur J 14:3338–3345

    CAS  Google Scholar 

  199. Ponec R, Lendvay G, Chaves J (2008) Structure and bonding in binuclear metal carbonyls from the analysis of domain averaged Fermi holes. I. Fe2(CO)9 and Co2(CO)8. J Comput Chem 29:1387–1398

    CAS  Google Scholar 

  200. Ponec R, Yuzhakov G, Carbó-Dorca R (2003) Chemical structures from the analysis of domain-averaged Fermi holes: multiple metal-metal bonding in transition metal compounds. J Comput Chem 24:1829–1838

    CAS  Google Scholar 

  201. Cioslowski J (1990) Isopycnic orbital transformations and localization of natural orbitals. Int J Quantum Chem S24:15–28

    Google Scholar 

  202. Ponec R, Uhlik F (1997) Electron pairing and chemical bonds. On the accuracy of the electron pair model of chemical bond. J Mol Struct (THEOCHEM) 391:159–168

    CAS  Google Scholar 

  203. Tiana D, Francisco E, Blanco AM, Macchi P, Sironi A, Pendás AM (2011) Restoring orbital thinking from real space descriptions: bonding in classical and non classical transition metal carbonyls. Phys Chem Chem Phys 13(11):5068–5077

    CAS  Google Scholar 

  204. Savin A, Silvi B, Colonna F (1996) Topological analysis of the electron localization function applied to delocalized bonds. Can J Chem 74:1088–1096

    CAS  Google Scholar 

  205. Silvi B (2002) The synaptic order: a key concept to understand multicenter bonding. J Mol Struct 614:3–10

    CAS  Google Scholar 

  206. Bader RFW, Gatti C (1998) A Green’s function for the density. Chem Phys Lett 287:233–238

    CAS  Google Scholar 

  207. Arfken G (1985) Mathematical methods for physicists. Academic, Orlando

    Google Scholar 

  208. Gatti C, Cargnoni F, Bertini L (2003) Chemical information from the source function. J Comput Chem 24:422–436

    CAS  Google Scholar 

  209. Gatti C (2011) The source function descriptor as a tool to extract chemical information from theoretical and experimental electron densities. Struct Bond 1–93. doi:10.1007/430_2010_31

    Google Scholar 

  210. Monza E, Gatti C, Lo Presti L, Ortoleva E (2011) Revealing electron delocalization through the source function. J Phys Chem A ASAP DOI: 10.1021/jp204000d

    Google Scholar 

  211. Gatti C, Bertini L (2004) The local form of the source function as a fingerprint of strong and weak intra- and intermolecular interactions. Acta Crystallogr A 60:438–449

    Google Scholar 

  212. Farrugia LJ, Macchi P (2009) On the interpretation of the source function. J Phys Chem A 113:10058–10067

    CAS  Google Scholar 

  213. Spackman MA (1999) Hydrogen bond energetics from topological analysis of experimental electron densities: recognising the importance of the promolecule. Chem Phys Lett 301: 425–429

    CAS  Google Scholar 

  214. Spackman MA, Byrom PG (1997) A novel definition of a molecule in a crystal. Chem Phys Lett 267:215–220

    CAS  Google Scholar 

  215. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen JA, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    CAS  Google Scholar 

  216. Gordon G, Kim YS (1972) Theory for the forces between closed-shell atoms and molecules. J Chem Phys 56:3122–3133

    CAS  Google Scholar 

  217. Cox SR, Hsu L-Y, Williams DE (1981) Nonbonded potential function models for crystalline oxohydrocarbons. Acta Crystallogr A 37:293–301

    Google Scholar 

  218. Gavezzotti A (2003) Calculation of intermolecular interaction energies by direct numerical integration over electron densities. 2. An improved polarization model and the evaluation of dispersion and repulsion energies. J Phys Chem B 107:2344–2353

    CAS  Google Scholar 

  219. Abramov YA, Volkov A, Wu G, Coppens P (2000) Use of X-ray charge density in the calculation of intermolecular interactions and lattice energies: application to glycylglycine, DL-histidine and DL-proline and comparison with theory. J Phys Chem B 104:2183–2188

    CAS  Google Scholar 

  220. Snyder J, Mogens C, Nishibori E, Caillat T, Iversen BB (2004) Disordered zinc in Zn4Sb3 with phonon glass, electron crystal thermoelectric properties. Nature Mater 3:458–463

    CAS  Google Scholar 

  221. Brock CP, Dunitz JD, Hirshfeld FL (1991) Transferability of deformation densities among related molecules - atomic multipole parameters from perylene for improved estimation of molecular vibrations in naphthalene and anthracene. Acta Crystallogr B 47:789–797

    Google Scholar 

  222. (a) Pichon-Pesme V, Lecomte C, Lachekar H (1995) On building a data bank of transferable experimental electron density parameters: application to polypeptides. J Phys Chem 99: 6242–6250; (b) Zarychta B, Pichon-Pesme V, Guillot B, Lecomte C, Jelsch C (2007) On the application of an experimental multipolar pseudo-atom library for accurate refinement of small-molecule and protein crystal structures. Acta Crystallogr A 63:108–125

    Google Scholar 

  223. Domagała S, Jelsch C (2008) Optimal local axes and symmetry assignment for charge-density refinement. J Appl Crystallogr 41:1140–1149

    Google Scholar 

  224. Bak JM, Domagala S, Hubschle C, Jelsch C, Dittrich B, Dominiak PM (2011) Verification of structural and electrostatic properties obtained by the use of different pseudoatom databases. Acta Crystallogr A67:141–153

    CAS  Google Scholar 

  225. (a) Abramov Yu A, Volkov AV, Coppens P (1999) On the evaluation of molecular dipole moments from multipole refinement of X-ray diffraction data. Chem Phys Lett 311:81–86; (b) Whitten AE, Turner P, Klooster WT, Piltz RO, Spackman MA (2006) Reassessment of large dipole moment enhancements in crystals: a detailed experimental and theoretical charge density analysis of 2-Methyl-4-nitroaniline. J Phys Chem A 110:8763–8776

    Google Scholar 

  226. Matta CF (2001) Theoretical reconstruction of the electron density of large molecules from fragments determined as proper open quantum systems: the properties of the oripavine PEO, enkephalins, and morphine. J Phys Chem A 105:11088–11101

    CAS  Google Scholar 

  227. (a) Rafat M, Shaik M, Popelier PLA (2006) Transferability of quantum topological atoms in terms of electrostatic interaction energy. J Phys Chem A 110:13578–13583; (b) Rafat M, Popelier PLA (2007) Atom-atom partitioning of total (super)molecular energy: the hidden terms of classical force fields. J Comput Chem 28:292–301; (c) Rafat M, Popelier PLA (2007) Long range behavior of high-rank topological multipole moments. J Comput Chem 28: 832–838

    Google Scholar 

  228. Houlding S, Liem SY, Popelier PLA (2007) A polarizable high-rank quantum topological electrostatic potential developed using neural networks: molecular dynamics simulations on the hydrogen fluoride dimer. Int J Quantum Chem 107:2817–2827

    CAS  Google Scholar 

  229. Bridgman PW (1931) The physics of high pressure. Bell and Sons, London

    Google Scholar 

  230. Ma Y, Eremets M, Oganov AR, Xie Y, Trojan I, Medvedev S, Lyakhov AO, Valle M, Prakapenka V (2009) Transparent dense sodium. Nature 458: 182–185

    CAS  Google Scholar 

  231. Marqués M, Ackland GJ, Lundegaard LF, Stinton G, Nelmes RJ, McMahon MI, Contreras-García J (2009) Potassium under pressure: a pseudobinary ionic compound. Phys Rev Lett 103:115501

    Google Scholar 

  232. (a) Pietsch U, Mahlberg J, Unger K (1985) Investigation of dynamical bond charge-transfer in GaAs by changing x-ray reflection power under high electric-field. Phys Status Solidi B 131:67–73; (b) Pietsch U, Unger K (1987) An experimental proof of the valence electron-density variation in silicon under high electric-field. Phys Status Solidi B 143:K95–K97; (c) Tsirelson VG, Gorfman SV, Pietsch U (2003) X-ray scattering amplitude of an atom in a permanent external electric field. Acta Crystallogr A 59:221–227; (d) Hansen NK, Fertey P, Guillot R (2004) Studies of electric field induced structural and electron-density modifications by X-ray diffraction. Acta Crystallogr A 60:465–471

    Google Scholar 

  233. Tiana D (2010) Organometallic chemistry from the interacting quantum atoms approach, PhD thesis, University of Milano

    Google Scholar 

  234. Seddon KR (1999) Crystal engineering. A case study. In: Seddon KR, Zaworotko M (eds) Crystal engineering. The design and application of functional solids. Kluwer, Amsterdam, pp 1–28

    Google Scholar 

  235. Desiraju GR (ed) (1989) Crystal engineering: the design of organic solids. Elsevier, Amsterdam

    Google Scholar 

  236. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32

    CAS  Google Scholar 

  237. Wolff SK, Grimwood DJ, McKinnon JJ, Jayatilaka D, Spackman MA (2008) CrystalExplorer 2.1. http://hirshfeldsurface.net/CrystalExplorer

  238. Dunitz JD, Gavezzotti A (2005) Molecular recognition in organic crystals: directed intermolecular bonds or nonlocalized bonding? Angew Chem Int Ed 44:1766–1787

    CAS  Google Scholar 

  239. Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen-bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    CAS  Google Scholar 

  240. Ramberg PJ (2003) Chemical structure, spatial arrangements, the early history of stereochemistry 1874–1914. Ashgate, Aldershot

    Google Scholar 

  241. (a) Pasteur L (1848) Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire. Comptes Rendus Ac. Sc. 26:535–538; (b) van’t Hoff JH (1875) Sur les formules de structure dans l’espace. Bull Soc Chim France 23:295–301

    Google Scholar 

  242. Gillespie RJ, Hargittai I (1991) The VSEPR model of molecular geometry. Allyn & Bacon, Boston

    Google Scholar 

  243. Lewis GN (1916) The atom and the molecule. J Am Chem Soc 38:762–785

    CAS  Google Scholar 

  244. Macchi P, Sironi A (2007) Interactions involving metals: from “chemical categories” to QTAIM, and backwards, chapter 13. In: Matta CF, Boyd RJ (eds) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinheim

    Google Scholar 

  245. (a) Chatt J, Duncanson LA (1953) Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes. J Chem Soc 2939–2947; (b) Dewar JS (1951) A review of the pi-complex theory. Bull Soc Chim Fr 18:C71–C79

    Google Scholar 

  246. (a) Scherer W, Eickerling G, Shorokhov D, Gullo E, McGrady GS, Sirsch P (2006) Valence shell charge concentrations and the Dewar–Chatt–Duncanson bonding model. New J Chem 30:309–312; (b) Hebben N, Himmel HJ, Eickerling G, Herrmann C, Reiher M, Herz V, Presnitz M, Scherer W (2007) The electronic structure of the tris(ethylene) complexes [M(C2H4)3] (M = Ni, Pd, and Pt): a combined experimental and theoretical study. Chem Eur J 13:10078–10087; (c) Reisinger A, Trapp N, Krossing I, Altmannshofer S, Herz V, Presnitz M, Scherer W (2008) Homoleptic silver(I) acetylene complexes. Angew Chem Int Ed Engl 46:8295–8298

    Google Scholar 

  247. Rohrmoser B, Eickerling G, Presnitz M, Scherer W, Eyert V, Hoffmann R-D, Rodewald UC, Vogt C, Pöttgen R (2007) Experimental electron density of the complex carbides Sc3[Fe(C2)2] and Sc3[Co(C2)2]. J Am Chem Soc 129:9356–9365

    CAS  Google Scholar 

  248. Scherer W, McGrady GS (2004) Agostic interactions in d0 metal alkyl complexes. Angew Chem Int Ed Engl 43:1782–1806

    CAS  Google Scholar 

  249. (a) Leusser D, Walfort B, Stalke D (2002) Charge-density study of methane di(triimido)sulfonic acid H2C{S(Nt-Bu)2(NHt-Bu)}2 – the NR analogue of H2C{S(O)2(OH)}2. Angew Chem 41:20792082; (b) Leusser D, Henn J, Kocher N, Engels B, Stalke D (2004) S = N versus S+-N-: an experimental and theoretical charge density study. J Am Chem Soc 126:1781–1793; (c) Kocher N, Henn J, Gostevskii B, Kost D, Kalikhman I, Engels B, Stalke D (2004) Si-E (E = N, O, F) bonding in a hexacoordinated silicon complex: new facts from experimental and theoretical charge density studies. J Am Chem Soc 126:5563–5568

    Google Scholar 

  250. Ortin Y, Lugan N, Pillet S, Souhassou M, Lecomte C, Costuas K, Saillard J-Y (2005) A favorable case where an experimental electron density analysis offers a lead for understanding a specific fluxional process observed in solution. Inorg Chem 44:9607–9609

    CAS  Google Scholar 

  251. (a) Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20:722–725; (b) Fukui K (1971) Recognition of stereochemical paths by orbital interaction. Acc Chem Res 4:57–64

    Google Scholar 

  252. Fleming I (1976) Frontier orbitals and organic chemical reactions. Wiley, Chichester

    Google Scholar 

  253. Woodward RB, Hoffmann R (1965) Stereochemistry of electrocyclic reactions. J Am Chem Soc 87:395–397; Hoffmann R, Woodward RB (1970) Orbital symmetry control of chemical reactions. Science 167:825–831

    Google Scholar 

  254. (a) Pathak RK, Gadre SR (1990) Maximal and minimal characteristics of molecular electrostatic potentials. J Chem Phys 93:1770–1773; Gadre SR (1999) Topography of atomic and molecular scalar fields. In: Jerzy Leszczynski (ed) Computational chemistry: reviews of current trends, vol 4. World Scientific, Singapore, pp 1–53

    Google Scholar 

  255. Roy DK, Balanarayan P, Gadre SR (2009) Signatures of molecular recognition from the topography of electrostatic potential. J Chem Sci 121:815–821

    CAS  Google Scholar 

  256. Balanarayan P, Kavathekar R, Gadre SR (2007) Electrostatic potential topography for exploring electronic reorganizations in 1,3 dipolar cycloadditions. J Phys Chem A 111: 2733–2738

    CAS  Google Scholar 

  257. Gatti C, Barzaghi M, Bonati L, Pitea D (1989) On the chemical nature of transition states in cycloaddition reactions: a charge density topological approach. Application to the thermal cycloaddition of two ethylenes and to the Diels Alder reaction of butadiene and ethylene. In: Carbó R (ed) Quantum chemistry: basic aspects, actual trends, studies in physical and theoretical chemistry, vol 62. Elsevier Publishers, Amsterdam, pp 401–427

    Google Scholar 

  258. (a) Berski S, Andrés J, Silvi B, Domingo LR (2003) The joint use of catastrophe theory and electron localization function to characterize molecular mechanisms. A density functional study of the Diels − Alder reaction between ethylene and 1,3-butadiene. J Phys Chem A 107:6014–6024; (b) Polo V, Andres J, Berski S, Domingo LR, Silvi B (2008) Understanding reaction mechanisms in organic chemistry from catastrophe theory applied to the electron localization function topology. J Phys Chem A112:7128–7136

    Google Scholar 

  259. Bader RFW, MacDougall PJ, Lau CDH (1984) Bonded and nonbonded charge concentrations and their relation to molecular geometry and reactivity. J Am Chem Soc 106:1594–1605

    CAS  Google Scholar 

  260. Carrol MT, Chang C, Bader RFW (1988) Prediction of the structures of hydrogen-bonded complexes using the Laplacian of the charge density. Mol Phys 63:387–405

    Google Scholar 

  261. Bader RFW, Popelier PLA, Chang C (1992) Similarity and complementarity in chemistry. Theochem J Mol Struct 87:145–171

    CAS  Google Scholar 

  262. (a) Scherer W, Sirsch P, Shorokhov D, Tafipolsky M, McGrady GS, Gullo E (2003) Valence charge concentrations, electron delocalization and β-agostic bonding in d(0) metal alkyl complexes. Chem Eur J 9:6057–6070; (b) Himmel D, Trapp N, Krossing I, Altmannshofer S, Herz V, Eickerling G, SchererW (2008) Reply Angew Chem Int Ed 47:7798–7801; (c) Scherer W, Wolstenholme DJ, Herz V, Eickerling G, Brück A, Benndorf P, Roesky PW (2010) On the nature of agostic interactions in transition-metal amido complexes. Angew Chem Int Ed 49:2242–2246

    Google Scholar 

  263. (a) Parr RG, Yang W (1989) Density-functional theory of atoms and molecules, Oxford University Press, New York; (b) Geerlings P, De Proft, F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:17931873

    Google Scholar 

  264. Berkowitz M (1987) Density functional-approach to frontier controlled reactions. J Am Chem Soc 109:4823–4825

    CAS  Google Scholar 

  265. (a) Ayers PW, Parr RG, Nagy A (2002) Local kinetic energy and local temperature in the density – functional theory of electronic structure. Int J Quantum Chem 90:309–326; (b) Ayers PW (2005) Electron localization functions and local measures of the covariance. J Chem Sci 117:441–454

    Google Scholar 

  266. Chattaraj PK, Chamorro E, Fuentealba P (1999) Chemical bonding and reactivity: a local thermodynamic viewpoint. Chem Phys Lett 314:114–121

    CAS  Google Scholar 

Download references

Acknowledgements

This book was planned in autumn 2008, after the successful organization of the 5th European Charge Density Meeting (Gravedona, Italy, 6–11 June 2008). We accepted the invitation from Springer, by proposing a challenging project, that was to provide a broad overview of the many applications of charge density analysis, involving many scientists who were requested, whenever possible, to write joint contributions. We believe that this goal has been achieved, although with strong efforts, given its complexity.We are indebted to a number of colleagues, especially to all the authors of contributions reported in this book, for their excellent cooperation and many useful suggestions. We also thank those colleagues who acted as anonymous referees and largely contributed to the improvement of this project.

We wish to dedicate this book to some colleagues who have unfortunately passed away during the production of this book, in particular Prof. M. A. Blanco (University of Oviedo), Prof. A. Goeta (University of Durham), Prof. C. Pisani and Prof. C. Roetti, both at University of Turin.

P.M. thanks the Swiss National Science Foundation for financial support of his research (project 200021_125313).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlo Gatti or Piero Macchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gatti, C., Macchi, P. (2011). A Guided Tour Through Modern Charge Density Analysis. In: Gatti, C., Macchi, P. (eds) Modern Charge-Density Analysis. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3836-4_1

Download citation

Publish with us

Policies and ethics