Skip to main content

Intelligence in Electricity Networks for Embedding Renewables and Distributed Generation

  • Chapter
  • First Online:

Part of the book series: Intelligent Systems, Control and Automation: Science and Engineering ((ISCA,volume 42))

Abstract

Over the course of the 20th century, electrical power systems have become one of the most complex systems created by mankind. Electricity has made a transition from a novelty, to a convenience, to an advantage, and finally to an absolute necessity. The electricity infrastructure consists of two highly-interrelated subsystems for commodity trade and physical delivery. To ensure the infrastructure is up and running in the first place, the increasing electricity demand poses a serious threat. Additionally, two other trends force a change in infrastructure management. Firstly, there is a shift toward intermittent sources, which gives rise to a higher influence of weather patterns on generation. At the same time, introducing more combined heat and power generation (CHP) couples electricity production to heat demand patterns. Secondly, the location of electricity generation relative to the load centers is changing. Large-scale generation from wind is migrating towards and into the seas and oceans, and, with the increase of distributed generators (DG), the generation capacity embedded in the (medium and low voltage) distribution networks is rising. Due to these developments, intelligent distributed coordination will be essential to ensure the efficient operation of this critical infrastructure in the future. As compared to traditional grids, operated in a top-down manner, these novel grids will require bottom-up control. As field test results have shown, intelligent distributed coordination can be beneficial to both energy trade and active network management. In future power grids, these functions need to be combined in a dual-objective coordination mechanism. To exert this type of control, alignment of power systems with communication network technology as well as computer hardware and software in shared information architectures will be necessary.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Akkermans, J. Schreinemakers, and K. Kok. Microeconomic distributed control: Theory and application of multi-agent electronic markets. In Proceedings of the 2nd International Conference on Critical Infrastructures, Grenoble, France, 2004.

    Google Scholar 

  2. J. Berst, P. Bane, M. Burkhalter, and A. Zheng. The electricity economy. White paper, Global Environment Fund, August 2008.

    Google Scholar 

  3. R. K. Dash, D. C. Parkes, and N. R. Jennings. Computational mechanism design: A call to arms. IEEE Intelligent Systems, 18(6):40–47, November/December 2003.

    Google Scholar 

  4. L. J. de Vries. Securing the public interest in electricity generation markets, The myths of the invisible hand and the copper plate. PhD thesis, Delft University of Technology, Delft, The Netherlands, 2004.

    Google Scholar 

  5. Energy Information Administration. International Energy Outlook 2007. EIA, Paris, France, 2007.

    Google Scholar 

  6. Energy Information Administration. http://www.eia.doe.gov/emeu/international /RecentElectricityGenerationByType.xls, December 2008.

  7. ENIRDGnet. Concepts and opportunities of distributed generation: The driving European forces and trends. Project Deliverable D3, ENIRDGnet, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Kok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kok, J.K., Scheepers, M.J.J., Kamphuis, I.G. (2010). Intelligence in Electricity Networks for Embedding Renewables and Distributed Generation. In: Negenborn, R., Lukszo, Z., Hellendoorn, H. (eds) Intelligent Infrastructures. Intelligent Systems, Control and Automation: Science and Engineering, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3598-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3598-1_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3597-4

  • Online ISBN: 978-90-481-3598-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics