Skip to main content

Diffusion in Soils

  • Reference work entry
  • First Online:
Encyclopedia of Agrophysics

Synonyms

Gas diffusion in soil; Heat diffusion in soil; Soil water dispersion; Solute diffusion in soil; Water diffusion in soil; Water transport in unsaturated soil

Definition

Diffusion is a process that causes the spread of a constituent mass within the medium under gradient of concentration. It originates from the random motion of particles (molecular diffusion). Diffusion equation describes well various spread processes of water, gases, solutes, and heat in porous media. In case of a porous material, diffusion coefficient is interpreted as dispersion coefficient with the value dependent on porous material structure. Diffusion equation allows to describe, in a simple manner, the transfer of mass or heat in porous media by inclusion of various effects into one parameter – dispersion coefficient.

Introduction

In soil, various diffusion processes occur. They comprise diffusive transport of heat energy, of gases, of solutes, as well as of water under unsaturated conditions. These...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Ahuja, L. R., and Swartznendruber, D., 1972. An improved form of soil-water diffusivity function. Soil Science Society of America Proceedings, 36, 9–14.

    Google Scholar 

  • Anderson, A. N., Crawford, J. W., and McBratney, A. B., 2000. On diffusion in fractal soil structures. Soil Science Society of America Journal, 64, 19–24.

    CAS  Google Scholar 

  • Black, T. A., Gardner, W. R., and Thurthell, G. W., 1969. Prediction of evaporation, drainage and soil water storage for a bare soil. Soil Science Society of America Journal, 33, 655–660.

    Google Scholar 

  • Bolt, G. A., Jans, A. R. P., and Koenigs, F. F. R., 1966. Basic Elements of Soil Chemistry and Physics. Wageningen: Agricultural University.

    Google Scholar 

  • Cook, F. J., and Knight, J. H., 2003. Oxygen transport to plant roots. Modeling for physical understanding of soil aeration. Soil Science Society of America Journal, 67, 20–31.

    CAS  Google Scholar 

  • Darcy, H., 1856. Les fontaines publiques de la ville de Dijon. Paris: Dalmont.

    Google Scholar 

  • Fick, A., 1855. On liquid diffusion. Philosophical Magazine and Science Journal, 10, 31–39.

    Google Scholar 

  • Fourier, J., 1822. Theorie Analytique de la Chaleur. Firmin Didot.

    Google Scholar 

  • Glinski, J., and Stepniewski, W., 1985. Soil Aeration and Its Role for Plants. Boca Raton: CRC.

    Google Scholar 

  • Hillel, D., 1982. Introduction to Soil Physics. San Diego: Academic.

    Google Scholar 

  • Højberg, O., Revsbech, N. P., and Tiedje, J. M., 1994. Denitrification in soil aggregates analyzed with microsensors for nitrous oxide and oxygen. Soil Science Society of America Journal, 58, 1691–1698.

    Google Scholar 

  • Horn, R., 1994. Effect of aggregation of soils on water, gas and heat transport. In Schulze, E. E. (ed.), Flux Control in Biological Systems. San Diego: Academic, Vol. 10, pp. 335–361.

    Google Scholar 

  • Horn, R., and Smucker, A., 2005. Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils. Soil and Tillage Research, 82, 5–14.

    Google Scholar 

  • Kristensen, A. H., Thorbjørn, A., Jensen, M. P., Pedersen, M., and Moldrup, P., 2010. Gas-phase diffusivity and tortuosity of structured soils. Journal of Contaminant Hydrology, 115, 26–33.

    CAS  PubMed  Google Scholar 

  • Lisle, I. G., Parlange, J. Y., and Haverkamp, R., 1987. Exact desorptives for power law and exponential diffusivities. Soil Science Society of America Journal, 51, 867–869.

    Google Scholar 

  • Marshall, T. J., and Holmes, J. W., 1988. Soil Physics, 2nd edn. New York: Cambridge University Press.

    Google Scholar 

  • Mualem, Y., 1976. A new method for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12, 513–522.

    Google Scholar 

  • Pachepsky, Y., Timlin, D., and Rawls, W., 2003. Generalized Richards’ equation to simulate water transport in unsaturated soils. Journal of Hydrology, 272, 3–13.

    Google Scholar 

  • Parlange, M. B., Katul, G. G., Folegati, M. V., and Nielsen, R. D., 1993. Evaporation and the field scale soil water diffusivity function. Water Resources Research, 29(4), 1279–1286.

    Google Scholar 

  • Stepniewski, W., 1981. Oxygen diffusion and strength as related to soil compaction II. Oxygen diffusion coefficient. Polish Journal of Soil Science, 14, 3–13.

    Google Scholar 

  • van Duin, R. H. A., 1956. On the Influence of Tillage on Conduction of Heat, Diffusion of Air, and Infiltration of Water in Soil. Wageningen: Versl. Landbouwk. Onderz.

    Google Scholar 

  • van Genuchten, M Th., 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soil. Soil Science Society of America Journal, 44, 892–898.

    Google Scholar 

  • Zausig, J., Stepniewski, W., and Horn, R., 1993. Oxygen concentration and redox potential gradients in different model soil aggregates at a range of low moisture tensions. Soil Science Society of America Journal, 57, 906–916.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold Stępniewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Stępniewski, W., Sobczuk, H., Widomski, M. (2011). Diffusion in Soils. In: Gliński, J., Horabik, J., Lipiec, J. (eds) Encyclopedia of Agrophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3585-1_273

Download citation

Publish with us

Policies and ethics