Skip to main content

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 9))

Abstract

Heterogeneous condensed-state processes take place at interfaces of different phases. In general, the surfaces are not perfectly flat and their properties are not homogeneous: they are mostly rough with many irregularities and inhomogeneities. Surface geometric inhomogeneity is reflected in its chemical inhomogeneity. For the description of the structure of physical objects with inhomogeneous properties (roughness, mass density, heat density, etc.), the methods of fractal geometry can be applied (Šesták J, Science of heat and thermophysical studies: a generalized approach to thermal analysis. Elsevier, Amsterdam, 2005). The word “fractal” originates from the Latin word “fractus,” meaning broken. It is indicated that fractals are widespread and that the fractal geometry is the geometry of Nature (Barnsley MF, Fractals everywhere. Academic, New York, 1993). Classical geometry provides a first approximation to the structure of physical objects; it is the language that we use to communicate the designs of technological products and, very approximately, the forms of natural creations. Fractal geometry is an extension of classical geometry. It can be used to make precise models of physical structures of rough surfaces, disordered layers on surfaces and porous objects (such as heterogeneous catalysts). Furthermore, gels, soot, and smoke, and most macromolecules, are also fractals (Sadana A, Engineering biosensors: kinetics and design applications. Academic, New York, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Šesták J (2005) Science of heat and thermophysical studies: a generalized approach to thermal analysis. Elsevier, Amsterdam

    Google Scholar 

  2. Barnsley MF (1993) Fractals everywhere. Academic, New York

    Google Scholar 

  3. Sadana A (2002) Engineering biosensors: kinetics and design applications. Academic, New York

    Google Scholar 

  4. Mandelbrot B (1983) The fractal geometry of nature. Macmillan, New York

    Google Scholar 

  5. Atkins PW (1998) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  6. Zmeskal O, Nezadal M, Buchnicek M (2004) Field and potential of fractal–Cantorian structures and El Naschie‘s E- infinite theory. Chaos Solitons Fractals 19:1013–1022

    Article  CAS  Google Scholar 

  7. Zmeskal O, Buchnicek M, Vala M (2005) Thermal properties of bodies in fractal and cantorian physics. Chaos Solitons Fractals 25:941–954

    Article  CAS  Google Scholar 

  8. Zmeskal O, Vala M, Weiter M, Stefkova P (2009) Fractal-cantorian geometry of space-time. Chaos Solitons Fractals 42:1878–1892

    Article  CAS  Google Scholar 

  9. Šesták J, Kratochvil J (1973) Rational approach to thermodynamic processes and constitutive equation. J Therm Anal 5:193–201

    Article  Google Scholar 

  10. Šimon P (2006) Considerations on the single-step kinetics approximation. J Therm Anal Calorim 82:651–657

    Google Scholar 

  11. Šimon P (2007) The single-step approximation: attributes, strong and weak sides. J Therm Anal Calorim 88:709–715

    Article  Google Scholar 

  12. Ozao R, Ochiai M (1993) Fractal nature and thermal analysis of powders. J Therm Anal 40:1331–1340

    Article  CAS  Google Scholar 

  13. Avrami M (1939) Kinetics of phase change. I. General theory. J Chem Phys 7(12):1103–1112

    Article  CAS  Google Scholar 

  14. Avrami M (1940) Kinetics of phase change. II. Transformation–time relations for random distribution of nuclei. J Chem Phys 8(2):212–224

    Article  CAS  Google Scholar 

  15. Avrami M (1941) Kinetics of phase change. III. Granulation, phase change, and microstructure. J Chem Phys 9(2):177–184

    Article  CAS  Google Scholar 

  16. Jena SK, Chaturvedi MC (1992) Phase transformations in materials. Prentice Hall, Upper Saddle River

    Google Scholar 

  17. Kemeny T, Šesták J (1987) Comparison of crystallization kinetics determined by isothermal and nonisothermal evaluation methods. Thermochim Acta 110:113–129

    Article  CAS  Google Scholar 

  18. Flynn JH (1997) The “temperature integral:” its use and abuse. Thermochim Acta 300:83–92

    Article  CAS  Google Scholar 

  19. Kaye BH (1994) A random walk through fractal dimensions. VCH, Weinheim

    Book  Google Scholar 

  20. Rothschild WG (1998) Fractals in chemistry. Wiley, New York

    Google Scholar 

  21. Avnir D (1989) Fractal approach to heterogeneous chemistry. Wiley, New York

    Google Scholar 

  22. Kopelman R (1988) Fractal reaction kinetics. Science 241:1620–1626

    Article  CAS  Google Scholar 

  23. Ochiai M, Ozao R (1992) Fundamental properties in fractal nature and thermal analysis of powders. J Therm Anal 38:1901–1910

    Article  CAS  Google Scholar 

  24. Ochiai M, Ozao R (1992) Thermal analysis and self-similarity law in particle size distribution of powder samples. Part 1. Thermochim Acta 198:279–287

    Article  CAS  Google Scholar 

  25. Ozao R, Ochiai M (1992) Thermal analysis and self-similarity law in particle size distribution of powder samples. Part 2. Thermochimica Acta 198:289–295

    Article  CAS  Google Scholar 

  26. Lazarev VB, Izotov AD, Gavrichev KS, Shebershneva OV (1995) Fractal model of heat capacity for substances with diamond-like structures. Thermochimica Acta 269/270:109–116

    Article  CAS  Google Scholar 

  27. Segal E (1998) Fractal approach in the kinetics of solid-gas decompositions. J Therm Anal 52:537–542

    Article  CAS  Google Scholar 

  28. Segal E (2000) Fractal approach in the kinetics of solid-gas decompositions. Part II. J Therm Anal 61:979–984

    Article  CAS  Google Scholar 

  29. Holeček M (2000) Scale axis, fractals and some thermal phenomena. J Therm Anal 60:1093–1100

    Article  Google Scholar 

  30. Kalinin SV, Vertegel AA, Oleynikov NN, Tretyakov YD (1998) Kinetics of solid state reactions with fractal reagent. J Mater Synth Proc 6:305–309

    Article  CAS  Google Scholar 

  31. Vlad O, Popa VT, Segal E, Ross J (2005) Multiple rate-determining steps for non-ideal and fractal kinetics. J Phys Chem B 109:2455–2460

    Article  CAS  Google Scholar 

  32. Šesták J (2005) Modeling reaction mechanism: the use of Euclidian and fractal geometry. In: Science of heat and thermophysical studies: a generalized approach to thermal analysis. Elsevier, Amsterdam, pp 277–345

    Google Scholar 

  33. Šesták J (2012) Rationale and fallacy of thermoanalytical kinetic patterns: how we model subject matter. J Therm Anal Calorim doi:10.1007/s10973-011-2089-1, published online 21, December 2011 (in press)

    Google Scholar 

  34. Kalva Z, Sestak J, Mareš JJ, Stávek J (2009) Transdisciplinarity of diffusion including aspects of quasiparticles, quantum diffusion and self-organized reactions periodicity. In: Šesták J, Holeček M, Málek J (eds) Some thermodynamic, structural and behavioral aspects of materials accentuating non-crystalline states. OPS-ZCU, Pilsen

    Google Scholar 

  35. Kalva Z, Šesták J (2004) Transdisciplinary aspects of diffusion and magnetocaloric effect. J Therm Anal Calorim 76:67–74

    Article  CAS  Google Scholar 

  36. Jesenák V (1985) Philosophy of the mechanism of diffusion controlled processes. Thermochim Acta 92:39

    Article  Google Scholar 

  37. Jesenák V (1985) Thermal effects of oscillating solid-state reactions. Thermochim Acta 85:91

    Article  Google Scholar 

  38. Avramov I, Höche T, Rüssel C (1999) Is there a crystallization pendulum? J Chem Phys 110(17):8676–8678

    Article  CAS  Google Scholar 

  39. Elliot RS (1989) Eutectic solidification processing: crystalline and glassy alloys. Butterworth, London

    Google Scholar 

  40. Šesták J (2004) Disequilibria and dendritic growth. In: Heat, thermal analysis and society. Nucleus, Hradec Kralove

    Google Scholar 

  41. Mareš JJ, Šesták J, Hubík P (2011) Transport constitutive relations, quantum diffusion and periodic reactions. In: Šesták J, Mareš JJ, Hubík P (eds) Glassy, amorphous and nano-crystalline materials, Berlin, Springer, pp 227--244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Šimon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Šimon, P., Zmeškal, O., Šesták, J. (2012). Fractals in Solid-State Processes. In: Šesták, J., Šimon, P. (eds) Thermal analysis of Micro, Nano- and Non-Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3150-1_12

Download citation

Publish with us

Policies and ethics