Skip to main content

Clinical Use of 3-D Image Registration

  • Conference paper
Radiotherapy and Brachytherapy
  • 2022 Accesses

Abstract

Using DICOM it has become much easier to exchange images between different manufacturer's equipment, which is essential to clinically implement image registration. Therefore, first a simple introduction to DICOM will be given, in which the advantages of DICOM and some of its deficiencies are explained. Image registration algorithms can be grouped in two main categories: volume registration and chamfer matching algorithms. The merits and drawbacks of both possibilities will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://dicom.nema.org

  2. van Herk M, Kooy HM (1994) Automatic three-dimensional correlation of CT-CT, CT-MRI, and CT-SPECT using chamfer matching. Med Phys 21:1163–78.

    Article  Google Scholar 

  3. Kooy HM, van Herk M, Barnes PD, Alexander E 3rd, Dunbar SF, Tarbell NJ, Mulkern RV, Holupka EJ, Loeffler JS (1994) Image fusion for stereotactic radiotherapy and radiosurgery treatment planning. Int J Radiat Oncol Biol Phys 28:1229–34.

    Article  Google Scholar 

  4. Mangin JF, Frouin V, Bloch I, Bendriem B, Lopez-Krahe J (1994) Fast nonsupervised 3D registration of PET and MR images of the brain. J Cereb Blood Flow Metab 14:749–62.

    Google Scholar 

  5. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16(2):187–98.

    Article  Google Scholar 

  6. Grimson WL, Ettinger GJ, White SJ, Lozano-Perez T, Wells WM, Kikinis R (1996) An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization. IEEE Trans Med Imaging 15:129–40.

    Article  Google Scholar 

  7. Hajnal JV, Saeed N, Soar EJ, Oatridge A, Young IR, Bydder GM (1995) A registration and interpolation procedure for subvoxel matching of serially acquired MR images. J Comput Assist Tomogr 19:289–96.

    Article  Google Scholar 

  8. Hill DL, Batchelor PG, Holden M, Hawkes DJ (2001) Medical image registration. Phys Med Biol 46:R1–45.

    Article  ADS  Google Scholar 

  9. Studholme C, Hill DL, Hawkes DJ (1997) Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. Med Phys 24:25–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Remeijer, P. (2009). Clinical Use of 3-D Image Registration. In: Lemoigne, Y., Caner, A. (eds) Radiotherapy and Brachytherapy. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3097-9_11

Download citation

Publish with us

Policies and ethics