Skip to main content

Rice Genomics

Gateway to Future Cereal Improvement

  • Chapter
  • First Online:
Molecular Techniques in Crop Improvement

Abstract

There is an urgent need to increase world’s food production to meet the ever increasing demand. Rice plays a direct role as the cereal feeding half the world’s population and as an experimental workhorse. It has the smallest genome among cereals, has remarkable similarities with other cereals in sequence, structure, order and function of genes. Foreign genes can be incorporated into rice with ease by genetic transformation. Rice genetics is also well studied and understood. All these features have made rice a model cereal for functional genomics. With the availability of the near complete genome sequence, the emphasis is not only on understanding the functions of the predicted 35,000–50,000 genes, but also unraveling how these genes interact to control important agronomic traits under different environmental conditions. This chapter covers the genome-wide molecular techniques currently being employed in rice with the ultimate goal of achieving much needed increases in crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ammiraju JS, Yu Y, Luo M et al. (2005) Random sheared fosmid library as a new genomic tool to accelerate complete finishing of rice (Oryza sativa spp. Nipponbare) genome sequence: sequencing of gap-specific fosmid clones uncovers new euchromatic portions of the genome. Theor Appl Genet 111:1596–1607

    CAS  Google Scholar 

  • Ammiraju JS, Luo M, Goicoechea JL et al. (2006) The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res 16:140–147

    Article  PubMed  Google Scholar 

  • An S, Park S, Jeong DH et al. (2003) Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol 133:2040–2047

    Article  CAS  PubMed  Google Scholar 

  • An G, Lee S, Kim SH et al. (2005) Molecular genetics using T-DNA in rice. Plant Cell Physiol 46:14–22

    Article  CAS  PubMed  Google Scholar 

  • Antonio BA, Buell R, Yamazaki Y et al. (2007) Informatics resources for rice functional genomics. In: Upadhyaya NM (ed) Rice functional genomics-challenges, progress and prospects. Springer, New York, pp 356–394

    Google Scholar 

  • Bhat RS, Upadhyaya NM, Chaudhury A et al. (2007) Chemical and irradiation induced mutants and TILLING. In: Upadhyaya NM (ed) Rice functional genomics-challenges, progress and prospects. Springer, New York, pp 149–180

    Google Scholar 

  • Borsani O, Zhu J, Verslues PE et al. (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  CAS  PubMed  Google Scholar 

  • Brar DS, Khush GS (1997) Alien introgression in rice. Plant Mol Biol 35:35–47

    Article  CAS  PubMed  Google Scholar 

  • Brenner S, Johnson M, Bridgham J et al. (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    Article  CAS  PubMed  Google Scholar 

  • Chen JJ, Rowley JD, Wang SM (2000) Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification. Proc Natl Acad Sci U S A 97:349–353

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Jin W, Wang M et al. (2003) Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J 36:105–113

    Article  CAS  PubMed  Google Scholar 

  • Chin HG, Choe MS, Lee SH et al. (1999) Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J 19:615–623

    Article  CAS  PubMed  Google Scholar 

  • Cooke R, Piégu B, Panaud O et al. (2007) From rice to other cereals: comparative genomics. In: Upadhyaya NM (ed) Rice functional genomics-challenges, progress and prospects. Springer, New York, pp 429–479

    Chapter  Google Scholar 

  • Devos KM (2005) Updating the ‘crop circle’. Curr Opin Plant Biol 8:155–162

    Article  CAS  PubMed  Google Scholar 

  • Dunn WB, Bailey NJ, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625

    Article  CAS  PubMed  Google Scholar 

  • Eubel H, Braun HP, Millar AH (2005) Blue-native PAGE in plants: a tool in analysis of protein-protein interactions. Plant Methods 1:11

    Article  PubMed  Google Scholar 

  • Fujino K, Sekiguchi H, Kiguchi T (2005) Identification of an active transposon in intact rice plants. Mol Genet Genomics 273:150–157

    Article  CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    CAS  PubMed  Google Scholar 

  • Gowda M, Jantasuriyarat C, Dean RA et al. (2004) Robust-LongSAGE (RL-SAGE): a substantially improved LongSAGE method for gene discovery and transcriptome analysis. Plant Physiol 134:890–897

    Article  CAS  PubMed  Google Scholar 

  • Gowda M, Venu RC, Jia Y et al (2007a) Use of robust-long serial analysis of gene expression to identify novel fungal and plant genes involved in host-pathogen interactions. Methods Mol Biol 354:131–144

    CAS  PubMed  Google Scholar 

  • Gowda M, Venu RC, Li H et al (2007b) Magnaporthe grisea infection triggers RNA variation and antisense transcript expression in rice. Plant Physiol 144:524–533

    Article  CAS  PubMed  Google Scholar 

  • Greco R, Ouwerkerk PB, Taal AJ et al (2004) Transcription and somatic transposition of the maize En/Spm transposon system in rice. Mol Genet Genomics 270:514–523

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S et al. (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  Google Scholar 

  • Guiderdoni E, An G, Yu S-M et al. (2007) T-DNA insertion mutants as a resource for functional genomics. In: Upadhyaya NM (ed) Rice functional genomics-challenges, progress and prospects. Springer, New York, pp 182–321

    Google Scholar 

  • Hirochika H (2001) Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol 4:118–122

    Article  CAS  PubMed  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y et al (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci U S A 93:7783–7788

    Article  CAS  PubMed  Google Scholar 

  • Hirochika H, Guiderdoni E, An G et al (2004) Rice mutant resources for gene discovery. Plant Mol Biol 54:325–334

    Article  CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Iyer-Pascuzzi AS, Sweeny MT, Sarla N et al (2007) Use of naturally occurring alleles for crop improvement. In: Upadhyaya NM (ed) Rice functional genomics-challenges, progress and prospects. Springer, New York, pp 110–147

    Google Scholar 

  • Jiang N, Bao Z, Zhang X et al (2003) An active DNA transposon family in rice. Nature 421:163–167

    Article  CAS  PubMed  Google Scholar 

  • Johnson AAT, Yu S-M, Tester M (2007) Activation tagging systems in rice. In: Upadhyaya NM (ed) Rice functional genomics-challenges, progress and prospects. Springer, New York, pp 333–353

    Chapter  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Takasaki H, Komatsu S (2005) Comprehensive phosphoproteome analysis in rice and identification of phosphoproteins responsive to different hormones/stresses. J Proteome Res 4:1592–1599

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (1997) Origin,dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi S, Satoh K, Nagata T et al (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379

    Article  PubMed  Google Scholar 

  • Kikuchi S, Wang G-L, Li L (2007) Genome-wide RNA expression profiling in rice. In: Upadhyaya NM (ed) Rice functional genomics-challenges, progress and prospects. Springer, New York, pp 31–59

    Chapter  Google Scholar 

  • Komatsu M, Chujo A, Nagato Y et al (2003a) FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130:3841–3850

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Shimamoto K, Kyozuka J (2003b) Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma. Plant Cell 15:1934–1944

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S (2007) Rice proteomics: a step toward functional analyses of the rice genome. In: Upadhyaya NM (ed) Rice functional genomics-challenges, progress and prospects. Springer, New York, pp 61–89

    Chapter  Google Scholar 

  • Komatsu S, Zang X, Tanaka N (2006) Comparison of two proteomics techniques used to identify proteins regulated by gibberellin in rice. J Proteome Res 5:270–276

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Dellaert LW, van der Veen JH (1982) EMS- and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutat Res 93:109–123

    CAS  PubMed  Google Scholar 

  • Lapidot M, Pilpel Y (2006) Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep 7:1216–1222

    Article  CAS  PubMed  Google Scholar 

  • Leung H, Wu C, Baraoidan M et al (2001) Deletion mutants for functional genomics: progress in phenotyping, sequence assignment, and database development. In: Khush G, Brar D, Hardy B (eds) Rice genetics IV. New Delhi Science Publishers, Inc., India

    Google Scholar 

  • Li L, Wang X, Xia M et al (2005) Tiling microarray analysis of rice chromosome 10 to identify the transcriptome and relate its expression to chromosomal architecture. Genome Biol 6:R52

    Article  Google Scholar 

  • Li L, Wang X, Stolc V et al (2006) Genome-wide transcription analyses in rice using tiling microarrays. Nat Genet 38:124–129

    Article  CAS  PubMed  Google Scholar 

  • Li X, Song Y, Century K et al (2001) A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J 27:235–242

    Article  CAS  PubMed  Google Scholar 

  • Lonhosky PM, Zhang X, Honavar VG et al (2004) A proteomic analysis of maize chloroplast biogenesis. Plant Physiol 134:560–574

    Article  Google Scholar 

  • Lu C, Jeong DH, Kulkarni K et al (2008) Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci U S A 105:4951–4956

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Chen C, Liu X et al (2005) A microarray analysis of the rice transcriptome and its comparison to Arabidopsis. Genome Res 15:1274–1283

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Wing RA, Han B et al (2007) Rice genome sequence: the foundation for understanding the genetic systems. In: Upadhyaya NM (ed) Rice functional genomics-challenges, progress and prospects. Springer, New York, pp 5–30

    Chapter  Google Scholar 

  • Matsumura H, Reich S, Ito A et al (2003) Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc Natl Acad Sci U S A 100:15718–15723

    Article  CAS  PubMed  Google Scholar 

  • McCouch SR, Kochert G (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815–829

    Article  CAS  Google Scholar 

  • Meyers BC, Tej SS, Vu TH et al (2004a) The use of MPSS for whole-genome transcriptional analysis in Arabidopsis. Genome Res 14:1641–1653

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Vu TH, Tej SS et al (2004b) Analysis of the transcriptional complexity of Arabidopsis thaliana by massively parallel signature sequencing. Nat Biotechnol 22:1006–1011

    Article  CAS  PubMed  Google Scholar 

  • Mizuno H, Ito K, Wu J et al (2006a) Identification and mapping of expressed genes, simple sequence repeats and transposable elements in centromeric regions of rice chromosomes. DNA Res 13:267–274

    Article  CAS  PubMed  Google Scholar 

  • Mizuno H, Wu J, Kanamori H et al (2006b) Sequencing and characterization of telomere and subtelomere regions on rice chromosomes 1S, 2S, 2L, 6L, 7S, 7L and 8S. Plant J 46:206–217

    Article  CAS  PubMed  Google Scholar 

  • Moore G, Devos KM, Wang Z et al (1995) Cereal genome evolution. Grasses, line up and form a circle. Curr Biol 5:737–739

    CAS  Google Scholar 

  • Morin RD, Aksay G, Dolgosheina E et al (2008) Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Res 18:571–584

    Article  CAS  PubMed  Google Scholar 

  • Nobuta K, Venu RC, Lu C et al (2007) An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol 25:473–477

    Article  CAS  PubMed  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  • Patankar S, Munasinghe A, Shoaibi A et al (2001) Serial analysis of gene expression in Plasmodium falciparum reveals the global expression profile of erythrocytic stages and the presence of anti-sense transcripts in the malarial parasite. Mol Biol Cell 12:3114–3125

    CAS  PubMed  Google Scholar 

  • Phillips JR, Dalmay T, Bartels D (2007) The role of small RNAs in abiotic stress. FEBS Lett 581:3592–3597

    Article  CAS  PubMed  Google Scholar 

  • Raghavan C, Naredo E, Wang H et al (2007) Rapid method for detecting SNPs on agarose gels and its application in candidate gene mapping. Mol Breed 19:87–101

    Article  CAS  Google Scholar 

  • Ronaghi M, Karamohamed S, Pettersson B et al (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Sparks AB, Rago C et al (2002) Using the transcriptome to annotate the genome. Nat Biotechnol 20:508–512

    Article  CAS  PubMed  Google Scholar 

  • Sallaud C, Gay C, Larmande P et al (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39:450–464

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Soga T, Nishioka T et al (2004) Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. Plant J 40:151–163

    Article  CAS  PubMed  Google Scholar 

  • Satoh K, Doi K, Nagata T et al (2007) Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray. PLoS ONE 2:e1235

    Article  Google Scholar 

  • Shimono M, Sugano S, Nakayama A et al (2007) Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19:2064–2076

    Article  CAS  PubMed  Google Scholar 

  • Stolc V, Li L, Wang X et al (2005) A pilot study of transcription unit analysis in rice using oligonucleotide tiling-path microarray. Plant Mol Biol 59:137–149

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J et al (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhou X, Zheng Y et al (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:25

    Article  PubMed  Google Scholar 

  • Suzuki T, Eiguchi M, Satoh H et al (2005) A modified TILLING system for rice mutant screening. Rice Genet News Lett 22:89–91

    Google Scholar 

  • Takahashi H, Hotta Y, Hayashi M et al (2005) High throughput metabolome and proteome analysis of transgenic rice plants (Oryza sativa L.). Plant Biotechnol 22:47–60

    CAS  Google Scholar 

  • Tanaka N, Mitsui S, Nobori H et al (2005) Expression and function of proteins during development of the basal region in rice seedlings. Mol Cell Proteomics 4:796–808

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Tarpley L, Roessner U (2007) Metabolomics: enabling sytstems-level phenotyping in rice functional genomics. In: Upadhyaya NM (ed) Rice functional genomics-challenges, progress and prospects. Springer, New York, pp 91–107

    Chapter  Google Scholar 

  • Tarpley L, Duran AL, Kebrom TH et al (2005) Biomarker metabolites capturing the metabolite variance present in a rice plant developmental period. BMC Plant Biol 5:8

    Article  PubMed  Google Scholar 

  • Till BJ, Cooper J, Tai TH et al (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    Article  PubMed  Google Scholar 

  • Upadhyaya NM, Zhu QH, Zhou XR et al (2006) Dissociation (Ds) constructs, mapped Ds launch pads and a transiently-expressed transposase system suitable for localized insertional mutagenesis in rice. Theor Appl Genet 112:1326–1341

    Article  CAS  PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B et al (1995) Serial analysis of gene expression. Science 270:484–487

    Article  CAS  PubMed  Google Scholar 

  • Wing RA, Kim H, Goicoechea JL et al (2007) The Oryza Map Alignment Project (OMAP): a new resource for comparative genome studies within Oryza. In: Upadhyaya NM (ed) Rice functional genomics-challenges, progress and prospects. Springer, New York, pp 395–409

    Chapter  Google Scholar 

  • Xu Y, Zhou X, Zhang W (2008) MicroRNA prediction with a novel ranking algorithm based on random walks. Bioinformatics 24:i50–58

    Article  Google Scholar 

  • Yammamoto T, Lin H, Sasaki T et al (2000) Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics 154

    Google Scholar 

  • Yano M (2001) Genetic and molecular dissection of naturally occurring variation. Curr Opin Plant Biol 4:130–135

    Article  CAS  PubMed  Google Scholar 

  • Yazaki J, Shimatani Z, Hashimoto A et al (2004) Transcriptional profiling of genes responsive to abscisic acid and gibberellin in rice: phenotyping and comparative analysis between rice and Arabidopsis. Physiol Genomics 17:87–100

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Wang J, Lin W et al (2005) The Genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    Article  Google Scholar 

  • Zhao W, Wang J, He X et al (2004) BGI-RIS: an integrated information resource and comparative analysis workbench for rice genomics. Nucleic Acids Res 32:D377–D382

    Article  Google Scholar 

  • Zhu QH, Hoque MS, Dennis ES et al (2003) Ds tagging of BRANCHED FLORETLESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L). BMC Plant Biol 3:6

    Article  PubMed  Google Scholar 

  • Zhu Q-H, Eun MY, Han C-D et al (2007) Transposon insertional mutants: a resource for rice functional genomics. In: Upadhyaya NM (ed) Rice functional genomics-challenges, progress and prospects. Springer, New York, pp 223–271

    Chapter  Google Scholar 

  • Zhu Q-H, Spriggs A, Matthew L et al (2008) A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res. doi:10.1101/gr.075572.107

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Drs. Danny Llewellyn, Chris Helliwell for reviewing the manuscript and Drs. Andrew Eamens, Qian-Hao Zhu and Sadequr Rahman for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayana M. Upadhyaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Upadhyaya, N.M., Dennis, E.S. (2010). Rice Genomics. In: Jain, S., Brar, D. (eds) Molecular Techniques in Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2967-6_11

Download citation

Publish with us

Policies and ethics