Skip to main content

Quantum Criticality in Heavy Electron Compounds

  • Conference paper
Properties and Applications of Thermoelectric Materials

Heavy electron systems provide ideal venues to study a range of issues associated with quantum criticality, including unconventional electronic phases, moment formation, and complex phase diagrams with exotic critical phenomena. In the heavy electron antiferromagnets studied so far, magnetic order occurs via a second order phase transition which can be tuned via pressure or field to a quantum critical point. Fermi liquid behavior is found beyond the quantum critical point, and the quasiparticle mass diverges at the quantum critical point, nucleating the moments required to enable magnetic order itself. We review here our experimental results on a new heavy electron system, Yb3Pt4, where antiferromagnetic order is weakly first order in zero field, but becomes second order at a critical endpoint with the application of magnetic field. No divergence of the quasiparticle mass is observed near the quantum critical field, and instead magnetic order is driven by the exchange enhancement of the Fermi liquid itself. These data support the thesis that there are multiple routes to quantum criticality in the heavy electron compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. N. D. Mathur, et al., Nature 394, 39 (1998).

    Article  ADS  CAS  Google Scholar 

  2. S. Saxena, et al., Nature 406, 587 (2000).

    Article  PubMed  ADS  CAS  Google Scholar 

  3. R. A. Borzi, et al., Science 315, 214 (2007).

    Article  PubMed  ADS  CAS  Google Scholar 

  4. P. Coleman and A. J. Schofield, Nature 433, 226 (2005).

    Article  PubMed  ADS  CAS  Google Scholar 

  5. R. B. Laughlin, Adv. Phys. 47, 943 (1998).

    Article  ADS  CAS  Google Scholar 

  6. C. M. Varma, et al., Phys. Rev. Lett. 63, 1996 (1999).

    Article  ADS  Google Scholar 

  7. G. R. Stewart, Rev. Mod. Phys. 73, 797 (2001).

    Article  ADS  CAS  Google Scholar 

  8. H. v. Lohneysen, et al., Rev. Mod. Phys. 79, 1015 (2007).

    Article  ADS  CAS  Google Scholar 

  9. P. Gegenwart, et al., Nature Physics 4, 186 (2008).

    Article  ADS  CAS  Google Scholar 

  10. D. Jaccard, et al., J. Phys.: Cond. Matter 13, L89 (2001).

    Article  ADS  CAS  Google Scholar 

  11. S. Doniach, in Valence Instabilities and Related Narrow Band Phenomena, edited by R. D. Parks (Plenum, New York, 1977), p. 169.

    Google Scholar 

  12. P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, K. Tenya, O. Trovarelli, and F. Steglich, Phys. Rev. Lett. 89, 056402 (2002).

    Article  PubMed  ADS  CAS  Google Scholar 

  13. P. Gegenwart, J. Custers, T. Tayama, K. Tenya, C. Geibel, G. Sparn, N. Harrison, P. Kerschl, D. Eckert, K. -H. Muller, and F. Steglich, J. Low. Temp. Phys. 133, 3 (2003).

    Article  CAS  Google Scholar 

  14. H. Shishido, R. Settai, H. Harima, and Y. Onuki, J. Phys. Soc. Japan 74, 1103 (2005).

    Article  ADS  CAS  Google Scholar 

  15. M. C. Aronson, R. Osborn. R. A. Robinson, J. W. Lynn, R. Chau, C. L. Seaman, and M. B. Maple, Phys. Rev. Lett. 75, 725 (1995).

    Article  PubMed  ADS  CAS  Google Scholar 

  16. M. C. Aronson, R. Osborn, R. Chau, M. B. Maple, B. D. Rainford, and A. P. Murani, Phys. Rev. Lett. 87, 197205 (2001).

    Article  PubMed  ADS  CAS  Google Scholar 

  17. A. Schroder, G. Aeppli, R. Coldea, M. Adams, O. Stockert, H. v. Lohneysen, E. Bucher, R. Ramazashvili, and P. Coleman, Nature 407, 351 (2000).

    Article  PubMed  ADS  CAS  Google Scholar 

  18. P. Coleman, C. Pepin, Q. Si, and R. Ramazashvili, J. Phys.: Cond. Matter 13, R723 (2001).

    Article  ADS  CAS  Google Scholar 

  19. Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature 413, 804 (2001).

    Article  PubMed  ADS  CAS  Google Scholar 

  20. J. Custers, P. Gegenwart, H. Wilhelm, K. Neumaier, Y. Tokiwa, O. Trovarelli, C. Geibel, F. Steglich, C. Pepin, and P. Coleman, Nature 424, 524 (2003).

    Article  PubMed  ADS  CAS  Google Scholar 

  21. T. Senthil, S. Sachdev, and M. Vojta, Phys. Rev. Lett. 90, 216403 (2003).

    Article  PubMed  ADS  CAS  Google Scholar 

  22. T. Senthil, M. Vojta, and S. Sachdev, Phys. Rev. B 69, 035111 (2004).

    Article  ADS  CAS  Google Scholar 

  23. S. Paschen, T. Luhmann, S. Wirth, P. Gegenwart, O. Trovarelli, C. Geibel, F. Steglich, P. Coleman, and Q Si, Nature 432, 881 (2004).

    Article  PubMed  ADS  CAS  Google Scholar 

  24. R. Daou, C. Bergemann, and S. R. Julian, Phys. Rev. Lett. 96, 026401 (2006).

    Article  PubMed  ADS  CAS  Google Scholar 

  25. M. C. Bennett, P. Khalifah, D. A. Sokolov, W. J. Gannon, Y. Yiu, M. S. Kim, C. Henderson, and M. C. Aronson, arXiv:0807.3586.

    Google Scholar 

  26. Y. Janssen, M. S. Kim, K. S. Park, L. Wu, C. Marques, M. C. Bennett, M. C. Aronson, Y. Chen, J. Li, Q. Huang, and J. W. Lynn (unpublished).

    Google Scholar 

  27. Y. Janssen, M. S. Kim, K. Stone, P. Stephens, P. G. Khalifah, Y. Chen, J. Li, Q. Huang, J. W. Lynn, and M. C. Aronson (unpublished).

    Google Scholar 

  28. M. C. Bennett, D. A. Sokolov, M. S. Kim, Y. Janssen, Yuen Yiu, W. J. Gannon, and M. C. Aronson, arXiv:0812.1082.

    Google Scholar 

  29. A. J. Millis, Phys. Rev. B 48, 7183 (1993).

    Article  ADS  CAS  Google Scholar 

  30. H. von Lohneysen, J. Phys.: Condensed Matter 8, 9689 (1996).

    Article  ADS  Google Scholar 

  31. S. R. Julian, et al., J. Phys.: Condensed Matter 8, 9675 (1996).

    Article  ADS  CAS  Google Scholar 

  32. S. L. Bud'ko, et al., Phys. Rev. B 69, 014415 (2004).

    Article  ADS  CAS  Google Scholar 

  33. C. Pfleiderer, J. Phys.: Cond. Matter 17, S987 (2005).

    Article  ADS  CAS  Google Scholar 

  34. M. Uhlarz, C. Pfleiderer, and S. M. Hayden, Phys. Rev. Lett. 93, 256404 (2004).

    Article  PubMed  ADS  CAS  Google Scholar 

  35. D. Belitz, et al., Rev. Mod. Phys. 77, 579 (2005).

    Article  ADS  CAS  Google Scholar 

  36. Y. J. Uemura, et al., Nature Physics 3, 29 (2007).

    Article  ADS  CAS  MathSciNet  Google Scholar 

  37. Z. Fisk, et al., Japanese Journal of Applied Physics 26 Suppl. 3, 1882 (1987).

    CAS  MathSciNet  Google Scholar 

  38. M. E. Fisher and J. S. Langer, Phys. Rev. Lett. 20, 665 (1968).

    Article  ADS  CAS  Google Scholar 

  39. N. Tsujii, et al., J. Phys.: Cond. Matt. 15, 1993 (2003).

    Article  ADS  CAS  Google Scholar 

  40. K. S. Dy and C. J. Pethick, Phys. Rev. 185, 373 (1969).

    Article  ADS  CAS  Google Scholar 

  41. G. Zwicknagl, Adv. Phys. 41, 203 (1992).

    Article  ADS  CAS  Google Scholar 

  42. C. D. Immer, J. L. Sarrao, Z. Fisk, A. Lacerda, C. Mielke, and J. D. Thompson, Phys. Rev. B 56, 71 (1997).

    Article  ADS  CAS  Google Scholar 

  43. J. L. Sarrao, A. P. Ramirez, T. W. Darling, F. Freibert, A. Migliori, C. D. Immer, Z. Fisk, and Y. Uwatoko, Phys. Rev. B 58, 409 (1998).

    Article  ADS  CAS  Google Scholar 

  44. P. Gegenwart, T. Westerkamp, C. Krellner, Y. Tokiwa, S. Paschen, C. Geible, F. Steglich, E. Abrahams, and Q. Si, Science 315, 969 (2007).

    Article  PubMed  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

Bennett, M.C., Sokolov, D.A., Kim, M.S., Janssen, Y., Aronson, M.C. (2009). Quantum Criticality in Heavy Electron Compounds. In: Zlatić, V., Hewson, A.C. (eds) Properties and Applications of Thermoelectric Materials. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2892-1_14

Download citation

Publish with us

Policies and ethics