Skip to main content

Efficient Explicitly Correlated Coupled-Cluster Approximations

  • Chapter
  • First Online:
Book cover Recent Progress in Coupled Cluster Methods

Abstract

Explicitly correlated MP2-F12 and CCSD(T)-F12 methods are reviewed. We focus on the CCSD(T)-F12x (x = a,b) approximations, which are only slightly more expensive than their non-F12 counterparts. Furthermore, local approximations in the LMP2-F12 and LCCSD-F12 methods are described, which make it possible to treat larger molecules than with standard coupled-cluster methods. We demonstrate the practicability of F12 methods by large benchmark calculations for various properties, including reaction energies, vibrational frequencies, and intermolecular interactions. In these calculations, the newly developed VnZ-F12 orbital and OPTRI auxiliary basis sets by Peterson et al. are compared to other previously used basis sets. The accuracy and efficiency of local approximations is demonstrated for reactions of large molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Karton, E. Rabinovich, J. M. L. Martin, B. Ruscic, J. Chem. Phys.125, 144108 (2006)

    Article  CAS  Google Scholar 

  2. A. Tajti, P. G. Szalay, A.G. Csáaszáar, M. Káallay, J. Gauss, E. F. Valeev,B. A. Flowers, J. Váazquez, J. F. Stanton, J. Chem. Phys.121, 11599 (2004)

    Article  CAS  Google Scholar 

  3. E. A. Hylleraas, Z. Phys.54, 347 (1929)

    Article  CAS  Google Scholar 

  4. T. Helgaker, W. Klopper, D. P. Tew, Mol. Phys.106, 2107 (2008)

    Article  CAS  Google Scholar 

  5. W. Kutzelnigg, Theor. Chim. Acta68, 445 (1985)

    Article  CAS  Google Scholar 

  6. W. Klopper, W. Kutzelnigg, Chem. Phys. Lett.134, 17 (1987)

    Article  CAS  Google Scholar 

  7. W. Klopper, W. Kutzelnigg, J. Phys. Chem.94, 5625 (1990)

    Article  CAS  Google Scholar 

  8. W. Kutzelnigg, W. Klopper, J. Chem. Phys.94, 1985 (1991)

    Article  CAS  Google Scholar 

  9. V. Termath, W. Klopper, W. Kutzelnigg, J. Chem. Phys.94, 2002 (1991)

    Article  CAS  Google Scholar 

  10. W. Klopper, W. Kutzelnigg, J. Chem. Phys.94, 2020 (1991)

    Article  CAS  Google Scholar 

  11. W. Klopper, Chem. Phys. Lett.186, 583 (1991)

    Article  CAS  Google Scholar 

  12. W. Klopper, R. Röhse, W. Kutzelnigg, Chem. Phys. Lett.178, 455 (1991)

    Article  CAS  Google Scholar 

  13. J. Noga, W. Kutzelnigg, W. Klopper, Chem. Phys. Lett.199, 497 (1992)

    Article  CAS  Google Scholar 

  14. J. Noga, W. Kutzelnigg, J. Chem. Phys.101, 7738 (1994)

    Article  CAS  Google Scholar 

  15. R. J. Gdanitz, J. Chem. Phys.109, 9795 (1998)

    Article  CAS  Google Scholar 

  16. W. Klopper, C. C. M. Samson, J. Chem. Phys.116, 6397 (2002)

    Article  CAS  Google Scholar 

  17. E. F. Valeev, Chem. Phys. Lett.395, 190 (2004)

    Article  CAS  Google Scholar 

  18. S. Ten-no, Chem. Phys. Lett.398, 56 (2004)

    Article  CAS  Google Scholar 

  19. A. J. May, F. R. Manby, J. Chem. Phys.121, 4479 (2004)

    Article  CAS  Google Scholar 

  20. F. R. Manby, A. J. May, Abstr. Pap. Am. Chem. Soc.228, 273 (2004)

    Google Scholar 

  21. A. J. May, E. Valeev, R. Polly, F. R. Manby, Phys. Chem. Chem. Phys.7,2710 (2005)

    Article  CAS  Google Scholar 

  22. D.P. Tew, W. Klopper, J. Chem. Phys.123, 074101 (2005)

    Article  CAS  Google Scholar 

  23. D.P. Tew, W. Klopper, J. Chem. Phys.125, 094302 (2006)

    Article  CAS  Google Scholar 

  24. E. F. Valeev, J. Chem. Phys.125, 244106 (2006)

    Article  CAS  Google Scholar 

  25. W. Klopper, F. R. Manby, S. Ten-no, E. F. Valeev, Int. Rev. Phys. Chem.25, 427 (2006)

    Article  CAS  Google Scholar 

  26. J. Noga, S. Kedžuch, J. Šimunek, J. Chem. Phys.127, 034106 (2007)

    Article  CAS  Google Scholar 

  27. F. R. Manby, H. J. Werner, T. B. Adler, A. J. May, J. Chem. Phys.124,094103 (2006)

    Article  CAS  Google Scholar 

  28. H. J. Werner, T. B. Adler, F. R. Manby, J. Chem. Phys.126, 164102 (2007)

    Article  CAS  Google Scholar 

  29. G. Knizia, H. J. Werner, J. Chem. Phys.128, 154103 (2008)

    Google Scholar 

  30. S. Ten-no, J. Chem. Phys.126, 014108 (2007)

    Google Scholar 

  31. F. R. Manby, J. Chem. Phys.119, 4607 (2003)

    CAS  Google Scholar 

  32. S. Ten-no, F. R. Manby, J. Chem. Phys.119, 5358 (2003)

    CAS  Google Scholar 

  33. K. A. Peterson, T. B. Adler, H. J. Werner, J. Chem. Phys.128, 084102 (2008)

    Google Scholar 

  34. K. E. Yousaf, K. A. Peterson, J. Chem. Phys.129, 184108 (2008)

    Google Scholar 

  35. K. E. Yousaf, K. A. Peterson, Chem. Phys. Lett.476, 303 (2009)

    Article  CAS  Google Scholar 

  36. C. Neiss, C. Hättig, W. Klopper, J. Chem. Phys.125, 064111 (2006)

    Google Scholar 

  37. H. Fliegl, C. Hättig, W. Klopper, J. Chem. Phys.124, 044112 (2006)

    Google Scholar 

  38. C. Neiss, C. Hättig, J. Chem. Phys.126, 154101 (2007)

    Google Scholar 

  39. J. Noga, P. Valiron, Chem. Phys. Lett.324, 166 (2000)

    Article  CAS  Google Scholar 

  40. J. Noga, S. Kedžuch, J. Šimunek, S. Ten-no, J. Chem. Phys.128, 174103 (2008)

    Google Scholar 

  41. T. Shiozaki, M. Kamiya, S. Hirata, E. F. Valeev, Phys. Chem. Chem. Phys.10, 3358 (2008)

    Article  CAS  Google Scholar 

  42. T. Shiozaki, M. Kamiya, S. Hirata, E. F. Valeev, J. Chem. Phys.129,071101 (2008)

    Google Scholar 

  43. A. Köhn, G. W. Richings, D. P. Tew, J Chem Phys129, 201103 (2008)

    Google Scholar 

  44. T. Shiozaki, M. Kamiya, S. Hirata, E. F. Valeev, J. Chem. Phys.130,054101 (2009)

    Google Scholar 

  45. T. Shiozaki, E. F. Valeev, S. Hirata, J. Chem. Phys.131, 044118 (2009)

    Google Scholar 

  46. A. Köhn, J. Chem. Phys.130, 131101 (2009)

    Google Scholar 

  47. H. Fliegl, W. Klopper, C. Hättig, J. Chem. Phys.122, 084107 (2005)

    Google Scholar 

  48. H. Fliegl, C. Hättig, W. Klopper, Int. J. Quantum Chem.106, 2306 (2006)

    Article  CAS  Google Scholar 

  49. D. P. Tew, W. Klopper, C. Neiss, C. Hättig, Phys. Chem. Chem. Phys.9, 1921 (2007)

    Article  CAS  Google Scholar 

  50. D. P. Tew, W. Klopper, C. Hättig, Chem. Phys. Lett.452, 326 (2008)

    Article  CAS  Google Scholar 

  51. T. B. Adler, G. Knizia, H. J. Werner, J. Chem. Phys.127, 221106 (2007)

    Google Scholar 

  52. G. Knizia, T. B. Adler, H. J. Werner, J. Chem. Phys.130, 054104 (2009)

    Google Scholar 

  53. O. Marchetti, H. J. Werner, Phys. Chem. Chem. Phys.10, 3400 (2008)

    Article  CAS  Google Scholar 

  54. G. Rauhut, G. Knizia, H. J. Werner, J. Chem. Phys.130, 054105 (2009)

    Google Scholar 

  55. P. Botschwina, R. Oswald, G. Knizia, H. J. Werner, Z. Phys. Chem.223,447 (2009)

    CAS  Google Scholar 

  56. O. Marchetti, H. J. Werner, J. Chem. Phys. A113, 11580 (2009)

    CAS  Google Scholar 

  57. E. F. Valeev, Phys. Chem. Chem. Phys.10, 106 (2008)

    Article  CAS  Google Scholar 

  58. E. F. Valeev, T. D. Crawford, J. Chem. Phys.128, 244113 (2008)

    Google Scholar 

  59. P. Pulay, Chem. Phys. Lett.100, 151 (1983)

    Article  CAS  Google Scholar 

  60. S. Saebø, P. Pulay, Chem. Phys. Lett.113, 13 (1985)

    Article  Google Scholar 

  61. S. Saebø, P. Pulay, J. Chem. Phys.86, 914 (1987)

    Google Scholar 

  62. S. Saebø, P. Pulay, Annu. Rev. Phys. Chem.44, 213 (1993)

    Article  Google Scholar 

  63. C. Hampel, H. J. Werner, J. Chem. Phys.104, 6286 (1996)

    CAS  Google Scholar 

  64. M. Schütz, G. Hetzer, H. J. Werner, J. Chem. Phys.111, 5691 (1999)

    Article  Google Scholar 

  65. M. Schütz, H. J. Werner, Chem. Phys. Lett.318, 370 (2000)

    Article  Google Scholar 

  66. M. Schütz, J. Chem. Phys.113, 9986 (2000)

    Article  Google Scholar 

  67. M. Schütz, H. J. Werner, J. Chem. Phys.114, 661 (2001)

    Article  Google Scholar 

  68. F. Claeyssens, J. N. Harvey, F. R. Manby, R. A. Mata, A. J. Mulholland, K. E.Ranaghan, M. Schütz, S. Thiel, W. Thiel, H. J. Werner, Angew. Chem.118, 7010 (2006)

    Article  Google Scholar 

  69. R.A. Mata, H. J. Werner, S. Thiel, W. Thiel, J. Chem. Phys. p. 025104 (2008)

    Google Scholar 

  70. H. J. Werner, J. Chem. Phys.129, 101103 (2008)

    Article  CAS  Google Scholar 

  71. T. B. Adler, H. J. Werner, F. R. Manby, J. Chem. Phys.130, 054106 (2009)

    Article  CAS  Google Scholar 

  72. T. B. Adler, H. J. Werner, J. Chem. Phys.130, 241101 (2009)

    Article  CAS  Google Scholar 

  73. H. J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz et al., Molpro, version 2009.1, a package of ab initio programs (2009). Seehttp://www.molpro.net

  74. S. Ten-no, J. Chem. Phys.121, 117 (2004)

    Article  CAS  Google Scholar 

  75. T. Kato, Comm. Pure Appl. Math.10, 151 (1957)

    Article  Google Scholar 

  76. R. T. Pack, W. Byers Brown, J. Chem. Phys.45, 556 (1966)

    Article  CAS  Google Scholar 

  77. S. Kedžuch, M. Milko, J. Noga, Int. J. Quantum Chem.105, 929 (2005)

    Article  CAS  Google Scholar 

  78. W. Klopper, J. Chem. Phys.120, 10890 (2004)

    Article  CAS  Google Scholar 

  79. C. Hampel, K. A. Peterson, H. J. Werner, Chem. Phys. Lett.190, 1 (1992)

    Article  CAS  Google Scholar 

  80. W. Meyer, J. Chem. Phys.64, 2901 (1976)

    Article  CAS  Google Scholar 

  81. P. Pulay, S. Saebø, W. Meyer, J. Chem. Phys.81, 1901 (1984)

    Article  CAS  Google Scholar 

  82. J. Pipek, P. G. Mezey, J. Chem. Phys.90, 4916 (1989)

    Article  CAS  Google Scholar 

  83. R. Mata, H. J. Werner, Mol. Phys.105, 2753 (2007)

    Article  CAS  Google Scholar 

  84. A. ElAzhary, G. Rauhut, P. Pulay, H. J. Werner, J. Chem. Phys.108,5185 (1998)

    Article  CAS  Google Scholar 

  85. M. Schütz, H. J. Werner, R. Lindh, F. R. Manby, J. Chem. Phys.121,737 (2004)

    Article  CAS  Google Scholar 

  86. J. W. Boughton, P. Pulay, J. Comput. Chem.14, 736 (1993)

    CAS  Google Scholar 

  87. H. J. Werner, K. Pflüger, Ann. Rep. Comput. Chem.2, 53 (2006)

    Article  CAS  Google Scholar 

  88. F. Boys, I. Shavitt, University of Wisconsin, Report WIS-AF-13 (1959)

    Google Scholar 

  89. J. L. Whitten, J. Chem. Phys.58, 4496 (1973)

    Article  CAS  Google Scholar 

  90. E. J. Baerends, D. E. Ellis, P. Ros, Chem. Phys.2, 41 (1973)

    Article  CAS  Google Scholar 

  91. O. Vahtras, J. Almlöf, M. W. Feyereisen, Chem. Phys. Lett.213, 514 (1993)

    Article  CAS  Google Scholar 

  92. M. W. Feyereisen, G. Fitzgerald, A. Komornicki, Chem. Phys. Lett.208,359 (1993)

    Article  CAS  Google Scholar 

  93. F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, Chem. Phys. Lett.294, 143 (1998)

    Article  CAS  Google Scholar 

  94. F. Weigend, A. Köhn, C. Hättig, J. Chem. Phys.116, 3175 (2002)

    Article  CAS  Google Scholar 

  95. H. J. Werner, F. R. Manby, P. Knowles, J. Chem. Phys.118, 8149 (2003)

    CAS  Google Scholar 

  96. C. Hättig, F. Weigend, J. Chem. Phys.5154, 2000 (113)

    Google Scholar 

  97. M. Schütz, F. R. Manby, Phys. Chem. Chem. Phys.5, 3349 (2003)

    Article  CAS  Google Scholar 

  98. C. Villani, W. Klopper, J. Phys. B38, 2555 (2005)

    Article  CAS  Google Scholar 

  99. H. J. Werner, F. R. Manby, J. Chem. Phys.124, 054114 (2006)

    Google Scholar 

  100. G. Knizia, H. J. Werner, J. Chem. Phys.128, 154103 (2008)

    Article  CAS  Google Scholar 

  101. F. A. Bischoff, S. Höfener, A. Glöss, W. Klopper, Theor. Chem. Acc.121, 11 (2008)

    Article  CAS  Google Scholar 

  102. S. Höfener, F. A. Bischoff, A. Glöss, W. Klopper, Phys. Chem. Chem.Phys.10, 3390 (2008)

    Article  CAS  Google Scholar 

  103. B. I. Dunlap, Phys. Chem. Chem. Phys.2, 2113 (2000)

    Article  CAS  Google Scholar 

  104. R. A. Kendall, T. H. Dunning, R.J. Harrison, J. Chem. Phys.96, 6796 (1992)

    Article  CAS  Google Scholar 

  105. T. Dunning Jr., K. A. Peterson, A. Wilson, J. Chem. Phys.114, 9244 (2001)

    Article  CAS  Google Scholar 

  106. F. Weigend, Phys. Chem. Chem. Phys.4, 4285 (2002)

    Article  CAS  Google Scholar 

  107. F. Weigend, A. Köhn, C. Hättig, J. Chem. Phys.116, 3175 (2002)

    Article  CAS  Google Scholar 

  108. L. A. Curtiss, K. Raghavachari, G. W. Trucks, J. A. Pople, J. Chem. Phys.94, 7221 (1991)

    Article  CAS  Google Scholar 

  109. D. Bokhan, S. Ten-no, J. Noga, Phys. Chem. Chem. Phys.10, 3320 (2008)

    Article  CAS  Google Scholar 

  110. P. JureČka, J. Šponer, J. Černáy, P. Hobza, Phys. Chem. Chem. Phys.8, 1985 (2006)

    Article  CAS  Google Scholar 

  111. F. Bernardi, S. F. Boys, Mol. Phys.19, 553 (1970)

    Article  Google Scholar 

  112. F. A. Bischoff, S. Wolfsegger, D. P. Tew, W. Klopper, Mol. Phys.107, 963 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in the priority program 1145 of the Deutsche Forschungsgemeinschaft. Further support by the Fonds der Chemischen Industrie is gratefully acknowledged. T.B.A. would also like to thank the Studienstiftung des deutschen Volkes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Werner .

Editor information

Editors and Affiliations

Appendix: The CCSD Equations in Expanded Form

Appendix: The CCSD Equations in Expanded Form

The CCSD residuals take the explicit form

$${R}^{ij}_{ab} = K^{ij}_{ab} + [{\bf K}({\bf D}^{ij})]_{ab} + \sum_{k,l} \alpha_{ij,kl} {D}^{kl}_{ab} + {G}^{ij}_{ab}+{G}^{ji}_{ba},$$
(21-143)
$$\begin{aligned} {\bf G}^{ij} &= {\bf T}^{ij} {\bf X} - \sum_{k} {\bf T}^{ik} \beta_{kj} - \sum_k [{\bf K}({\bf D}^{ij})^{(k)} + {\bf k}^{ijk}] {{\bf t}^k}^\dagger\\&+ \sum_k \left[ {\tilde {\bf T}}^{ik}{\bf Y}^{kj} - \frac{1}{2} {\bf T}^{ki} {\bf Z}^{kj} - ({\bf T}^{ki} {\bf Z}^{kj} )^\dagger \right], \end{aligned}$$
(21-144)
$$\begin{aligned} {\bf r}^i &= {\bf f}^i + [{\bf R}^\dagger- \sum_k (2{\bf J}^{kk}-{\bf K}^{kk})]{\bf t}^i - \sum_{k,l} {\bf T}^{lk} {\bf l}^{kli} \\ &+ \sum_k\left[ {\bf K}({\tilde {\bf D}}^{ik})^{(k)} + {\tilde {\bf T}}^{ik}{\bar {\bf f}}^k- {\bf t}^k\beta_{ki} \right], \end{aligned}$$
(21-145)

with the intermediates:

$$\alpha_{ij,kl}= K^{ij}_{kl} + \mathrm{tr} ({\bf C}^{ij} {\bf K}^{lk}) + ({{\bf t}^i}^\dagger {\bf k}^{klj} + {{\bf t}\,^j}^\dagger {\bf k}^{lki}),$$
(21-146)
$$\beta_{ki} = f_{ki}+{{\bf f}\,^k}^\dagger {\bf t}^i+ \sum_l \left[\mathrm{tr}({\bf L}^{kl} {\bf T}^{li})+{{\bf t}^l}^\dagger ({\bf l}^{lki}+{\bf L}^{lk} {\bf t}^{i})\right],$$
(21-147)
$${\bar {\bf f}}\,^k = {\bf f}\,^k+ \sum_l {\bf L}^{kl} {\bf t}^l,$$
(21-148)
$${\bf R} = {\bf f} - \sum_{k,l} {\bf L}^{kl} {\bf T}^{lk},$$
(21-149)
$${\bf X} =\, {\bf R} - \sum_k {\bar {\bf f}}\,^{k} {{\bf t}^k}^\dagger + \sum_k [ 2 {\bf J}({\bf E}^{kk}) - {\bf K}({\bf E}^{kk})],$$
(21-150)
$$\begin{aligned} {\bf Y}^{kj} &= {\bf K}^{kj} + {\bf K}({\bf E}^{kj}) - \frac{1}{2}\left[ {\bf J}^{kj} + {\bf J}({\bf E}^{kj}) \right]\\ &+ \frac{1}{4} \sum_l {\bf L}^{kl} {\tilde {\bf T}}^{lj} - \frac{1}{2} \sum_l ({\bf l}^{klj} + {\bf L}^{kl}{\bf t}\,^j ){{\bf t}^l}^\dagger, \end{aligned}$$
(21-151)
$${\bf Z}^{kj} = {\bf J}^{kj} + {\bf J}({\bf E}^{kj}) - \sum_l \left[ \frac{1}{2} {\bf K}^{lk} {\bf T}^{jl} + ({\bf k}^{lkj} + {\bf K}^{lk}{\bf t}\,^j){{\bf t}^l}^\dagger \right].$$
(21-152)

Glossary

\(A_{kl,mn} = \langle kl|F_{12} \hat {g}_{12} \hat Q_{12}F_{12}|mn\rangle\)

Part of MP2-F12 B-matrix

\(B_{kl,mn} = \langle kl|F_{12}\hat{Q}_{12}\hat{g}_{12}\hat{Q}_{12}F_{12}|mn\rangle\)

MP2-F12 B-matrix

\(C_{\mu i}\)

MO coefficients

\(C^{kl}_{ab} = \langle kl|F_{12}\hat{Q}_{12} \hat{f}_{12}|ab\rangle\)

MP2-F12 coupling terms

\(D^{ij}_{rs} = \delta_{rc}\delta_{sd} \left(T^{ij}_{cd}+ t^i_c t^j_d\right) + \delta_{ri} t^j_s + \delta_{sj} t^{i}_r,\)

Composite amplitudes

\(E^{ij}_{rs} = \delta_{ri} t^j_s\)

Used in contractions of integrals with singles

\(F^{ij}_{\alpha\beta} = \langle\alpha\beta| F_{12} | ij\rangle\)

Integrals overF_12

\(\bar F^{ij}_{\alpha\beta} = \langle\alpha\beta| F_{12} | kl\rangle T^{ij}_{kl}\)

Contracted integrals overF_12

\(G^{ij}_{\alpha\beta}\)

Intermediates in CCSD-F12 residuals

\(H_{mn,op} = \langle mn |F_{12} \hat{Q}_{12} r_{12}^{-1} \hat{Q} _{12}F_{12}|op \rangle\)

Matrix elements in CCSD-F12 energy expression

\(J^{kl}_{\alpha\beta} = \langle \alpha k | r_{12}^{-1} | \beta l\rangle\)

Two-external Coulomb integrals

\(K^{kl}_{\alpha\beta} = \langle \alpha\beta | r_{12}^{-1} | k l\rangle\)

Two-external exchange integrals

\(\bar K^{rs}_{\alpha\beta} = \langle \bar \alpha \bar \beta | r_{12}^{-1} |\tilde r \tilde s\rangle\)

Dressed integrals

\(K^F_{ij,kl}= \langle ij|r_{12}^{-1}F_{12}|kl\rangle\)

Integrals over\(r_{12}^{-1} F_{12} \)

\(R_{\alpha\beta}\)

Intermediates in CCSD-F12 residual

R ij kl

MP2-F12 residual for explicitly correlated amplitudes

R ij ab

MP2-F12 or CCSD-F12 doubles residual

\(S_{mn,op} = \langle mn|F_{12}\hat{Q}_{12}F_{12}|op\rangle\)

Overlap of explicitly correlated configurations

\(\bar S_{ij,kl} = \tilde T^{ij}_{mn} S_{mn,op} T^{kl}_{op}\)

Contracted overlap matrix

\(\tilde S^{(ij)}_{rs}= \langle \tilde r | \tilde s\rangle, \;\;r,s \in [ij]\)

Overlap matrix of PAOs in domain [ij]

T ij kl

Amplitudes of explicitly correlated configurations

T ij ab

Doubles amplitudes, virtual space

\({\cal T}^{ij}_{\alpha\beta}= \langle \alpha\beta | \hat Q_{12} F_{12} | kl \rangle T^{ij}_{kl} \)

Amplitudes of explicitly correlated terms in the complete virtual space

\({\cal U}^{ij}_{\alpha\beta} = \delta_{\alpha c} \delta_{\beta d} T^{ij}_{cd} + {\cal T}^{ij}_{\alpha \beta}\)

Composite doubles amplitudes in complete space

\(U^{kl}_{\alpha\beta} = \langle kl|[F_{12},\hat t_1 + \hat t_2]|\alpha\beta\rangle\)

Commutator integrals used in MP2-F12

\(U^F_{kl,mn} = \langle kl|[F_{12},\hat t_1 + \hat t_2]F_{12}|mn\rangle\)

Commutator integrals used in MP2-F12

\(V^{ij}_{kl} = \langle kl|F_{12}\hat{Q}_{12}r_{12}^{-1}|ij\rangle\)

Integrals used in MP2-F12

\(\bar V^{ij}_{\alpha\beta} = \langle\alpha\beta|r_{12}^{-1} \hat{Q} _{12}F _{12}|kl \rangle T^{ij}_{kl}\)

Contracted integrals used in CCSD-F12

\(\bar W^{ij}_{\alpha\beta} = \langle\alpha\beta| r_{12}^{-1}F_{12} | kl\rangle T^{ij}_{kl}\)

Contracted integrals used in CCSD-F12

\(W^{(ij)}_{\tilde \mu \tilde a }, \;\;\tilde \mu,\tilde a \in [ij]\)

Transformation from PAO basis to orthonormal basis in domain [ij]

\(X_{\alpha\beta}\),\(Y^{kj}_{\alpha\beta}\),\(Z^{kj}_{\alpha\beta}\)

Intermediates in CCSD-F12 residuals

\(Y_{kl,mn} = \langle kl | F_{12}\hat n_{12} \hat{Q}_{12} F_{12} | mn\rangle\)

Intermediates in MP2-F12 residuals

\(f_{\alpha\beta} = h_{\alpha\beta} + 2 J^{kk}_{\alpha\beta} - K^{kk}_{\alpha\beta}\)

Closed-shell Fock matrix

\(f^i_{\alpha} = f_{\alpha i}\)

One-external Fock matrix elements

\(\bar f_{\alpha\beta}\)

Dressed Fock matrix

\(\bar f^i_{\alpha} = \bar f_{i\alpha}\)

One-external dressed Fock matrix elements

\(\tilde f_{rs}^{(ij)} = f_{\tilde r \tilde s},\;\;\tilde r,\tilde s \in [ij]\)

Fock matrix in PAO basis in domain [ij]

\(k^{kli}_\alpha = K^{kl}_{\alpha i}\)

One-external integrals

t i a

CCSD singles amplitudes

r i a

CCSD singles residuals

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Werner, HJ., Adler, T.B., Knizia, G., Manby, F.R. (2010). Efficient Explicitly Correlated Coupled-Cluster Approximations. In: Cársky, P., Paldus, J., Pittner, J. (eds) Recent Progress in Coupled Cluster Methods. Challenges and Advances in Computational Chemistry and Physics, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2885-3_21

Download citation

Publish with us

Policies and ethics