Skip to main content

Titin and Titin-Associated Proteins in Myocardial Stress-Sensing and Mechanical Dysfunction

  • Chapter
  • First Online:
Book cover Mechanosensitivity of the Heart

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 3))

Abstract

Mechanical stress signals transmitted through the heart walls during hemodynamic loading are sensed by the myocytes. These signals play an important role in physiological heart development and hypertrophy, but disruption of the well-balanced stress-sensing machinery causes mechanical dysregulation, cardiac remodelling, and heart failure. In cardiomyocytes, nodal points of force transmission and mechanosensing reside in the Z-disk, M-band, and I-band regions of the sarcomeres. Longitudinal linkage of these regions is provided by the titin filament and several “hot spots” along this giant protein may be, along with some of its > 20 ligands, pivotal to the myofibrillar stretch response. This review outlines the known interaction partners of titin and highlights the putative stress/stretch sensor complexes at titin’s NH2 and COOH termini and their role in myopathies. Another focus is the elastic I-band titin section, which interacts with a diverse number of proteins and whose main function is as a determinant of diastolic distensibility and passive stiffness. The discussion summarizes recent insights into the plasticity, mechanical role, and regulation of the elastic titin springs in cardiac development and human heart disease. Titin and titin-based protein complexes are now recognized as integral parts of the mechanosensitive protein network and as critical components in cardiomyocyte stress/stretch signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams V, Linke A, Wisloff U, Doring C, Erbs S, Krankel N, et al. (2007) Myocardial expression of Murf-1 and MAFbx after induction of chronic heart failure: effect on myocardial contractility. Cardiovasc Res 73:120–129.

    CAS  PubMed  Google Scholar 

  • Agarkova I, Perriard JC (2005) The M-band: an elastic web that crosslinks thick filaments in the center of the sarcomere. Trends Cell Biol 15:477–485.

    CAS  PubMed  Google Scholar 

  • Arber S, Hunter JJ, Ross J Jr, Hongo M, Sansig G, Borg J, et al. (1997) MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88:393–403.

    CAS  PubMed  Google Scholar 

  • Armani A, Galli S, Giacomello E, Bagnato P, Barone V, Rossi D, et al. (2006) Molecular interactions with obscurin are involved in the localization of muscle-specific small ankyrin1 isoforms to subcompartments of the sarcoplasmic reticulum. Exp Cell Res 312:3546–3558.

    CAS  PubMed  Google Scholar 

  • Arya R, Kedar V, Hwang JR, McDonough H, Li HH, Taylor J, et al. (2004) Muscle ring finger protein-1 inhibits PKC{epsilon} activation and prevents cardiomyocyte hypertrophy. J Cell Biol 167:1147–1159.

    CAS  PubMed  Google Scholar 

  • Bagnato P, Barone V, Giacomello E, Rossi D, Sorrentino V (2003) Binding of an ankyrin-1 isoform to obscurin suggests a molecular link between the sarcoplasmic reticulum and myofibrils in striated muscles. J Cell Biol 160:245–253.

    CAS  PubMed  Google Scholar 

  • Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, et al. (2001a) The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89:1065–1072.

    CAS  PubMed  Google Scholar 

  • Bang ML, Li X, Littlefield R, Bremner S, Thor A, Knowlton KU, et al. (2006) Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle. J Cell Biol 173:905–916.

    CAS  PubMed  Google Scholar 

  • Bang ML, Mudry RE, McElhinny AS, Trombitas K, Geach AJ, Yamasaki R, et al. (2001b) Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J Cell Biol 153:413–427.

    CAS  PubMed  Google Scholar 

  • Barbato R, Menabo R, Dainese P, Carafoli E, Schiaffino S, Di Lisa F (1996) Binding of cytosolic proteins to myofibrils in ischemic rat hearts. Circ Res 78:821–828.

    CAS  PubMed  Google Scholar 

  • Bennett PM, Hodkin TE, Hawkins C (1997) Evidence that the tandem Ig domains near the end of the muscle thick filament form an inelastic part of the I-band titin. J Struct Biol 120:93–104.

    CAS  PubMed  Google Scholar 

  • Bennett PM, Maggs AM, Baines AJ, Pinder JC (2006) The transitional junction: a new functional subcellular domain at the intercalated disc. Mol Biol Cell 17:2091–2100.

    CAS  PubMed  Google Scholar 

  • Boateng SY, Belin RJ, Geenen DL, Margulies KB, Martin JL, Hoshijima M, et al. (2007) Cardiac dysfunction and heart failure are associated with abnormalities in the subcellular distribution and amounts of oligomeric muscle LIM protein. Am J Physiol Heart Circ Physiol 292:H259–H269.

    CAS  PubMed  Google Scholar 

  • Borbely A, van der Velden J, Papp Z, Bronzwaer JG, Edes I, Stienen GJ, Paulus WJ (2005) Cardiomyocyte stiffness in diastolic heart failure. Circulation 111:774–781.

    PubMed  Google Scholar 

  • Bos JM, Poley RN, Ny M, Tester DJ, Xu X, Vatta M, et al. (2006) Genotype-phenotype relationships involving hypertrophic cardiomyopathy-associated mutations in titin, muscle LIM protein, and telethonin. Mol Genet Metab 88:78–85.

    CAS  PubMed  Google Scholar 

  • Brancaccio M, Hirsch E, Notte A, Selvetella G, Lembo G, Tarone G (2006) Integrin signalling: the tug-of-war in heart hypertrophy. Cardiovasc Res 70:422–433.

    CAS  PubMed  Google Scholar 

  • Bullard B, Ferguson C, Minajeva A, Leake MC, Gautel M, Labeit D, et al. (2004) Association of the chaperone alphaB-crystallin with titin in heart muscle. J Biol Chem 279:7917–7924.

    CAS  PubMed  Google Scholar 

  • Canault M, Tellier E, Bonardo B, Mas E, Aumailley M, Juhan-Vague I, et al. (2006) FHL2 interacts with both ADAM-17 and the cytoskeleton and regulates ADAM-17 localization and activity. J Cell Physiol 208:363–372.

    CAS  PubMed  Google Scholar 

  • Cavnar PJ, Olenych SG, Keller TC 3rd (2007) Molecular identification and localization of cellular titin, a novel titin isoform in the fibroblast stress fiber. Cell Motil Cytoskeleton 64:418–433.

    CAS  PubMed  Google Scholar 

  • Cazorla O, Freiburg A, Helmes M, Centner T, McNabb M, Wu Y, et al. (2000) Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res 86:59–67.

    CAS  PubMed  Google Scholar 

  • Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, et al. (2001) Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 306:717–726.

    CAS  PubMed  Google Scholar 

  • Clark KA, McElhinny AS, Beckerle MC, Gregorio CC (2002) Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol 18:637–706.

    CAS  PubMed  Google Scholar 

  • Duan Y, DeKeyser JG, Damodaran S, Greaser ML (2006) Studies on titin PEVK peptides and their interaction. Arch Biochem Biophys 454:16–25.

    CAS  PubMed  Google Scholar 

  • Duguez S, Bartoli M, Richard I (2006) Calpain 3: a key regulator of the sarcomere? FEBS J 273:3427–3436.

    CAS  PubMed  Google Scholar 

  • Ervasti JM (2003) Costameres: the Achilles’ heel of Herculean muscle. J Biol Chem 278:13591–13594.

    CAS  PubMed  Google Scholar 

  • Fowler VM, McKeown CR, Fischer RS (2006) Nebulin: does it measure up as a ruler? Curr Biol 16:R18–R20.

    CAS  PubMed  Google Scholar 

  • Frank D, Kuhn C, Katus HA, Frey N (2006) The sarcomeric Z-disc: a nodal point in signalling and disease. J Mol Med 84:446–468.

    CAS  PubMed  Google Scholar 

  • Freiburg A, Gautel M (1996) A molecular map of the interactions between titin and myosin-binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. Eur J Biochem 235:317–323.

    CAS  PubMed  Google Scholar 

  • Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F, Centner T, et al. (2000) Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res 86:1114–1121.

    CAS  PubMed  Google Scholar 

  • Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79.

    CAS  PubMed  Google Scholar 

  • Fujita H, Labeit D, Gerull B, Labeit S, Granzier HL (2004) Titin isoform-dependent effect of calcium on passive myocardial tension. Am J Physiol Heart Circ Physiol 287:H2528–H2534.

    CAS  PubMed  Google Scholar 

  • Fukuda N, Granzier HL (2005) Titin/connectin-based modulation of the Frank-Starling mechanism of the heart. J Muscle Res Cell Motil 26:319–323.

    CAS  PubMed  Google Scholar 

  • Fukuda N, Wu Y, Nair P, Granzier HL (2005) Phosphorylation of titin modulates passive stiffness of cardiac muscle in a titin isoform-dependent manner. J Gen Physiol 125:257–271.

    CAS  PubMed  Google Scholar 

  • Fukuzawa A, Idowu S, Gautel M (2005) Complete human gene structure of obscurin: implications for isoform generation by differential splicing. J Muscle Res Cell Motil 26:427–434.

    CAS  PubMed  Google Scholar 

  • Garvey SM, Rajan C, Lerner AP, Frankel WN, Cox GA (2002) The muscular dystrophy with myositis (mdm) mouse mutation disrupts a skeletal muscle-specific domain of titin. Genomics 79:146–149.

    CAS  PubMed  Google Scholar 

  • Gautel M, Goulding D, Bullard B, Weber K, Furst DO (1996) The central Z-disk region of titin is assembled from a novel repeat in variable copy numbers. J Cell Sci 109:2747–2754.

    CAS  PubMed  Google Scholar 

  • Gerull B, Atherton J, Geupel A, Sasse-Klaassen S, Heuser A, Frenneaux M, et al. (2006) Identification of a novel frameshift mutation in the giant muscle filament titin in a large Australian family with dilated cardiomyopathy. J Mol Med 84:478–483.

    CAS  PubMed  Google Scholar 

  • Gerull B, Gramlich M, Atherton J, McNabb M, Trombitas K, Sasse-Klaassen S, et al. (2002) Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet 30:201–204.

    CAS  PubMed  Google Scholar 

  • Golenhofen N, Arbeiter A, Koob R, Drenckhahn D (2002) Ischemia-induced association of the stress protein alpha B-crystallin with I-band portion of cardiac titin. J Mol Cell Cardiol 34:309–319.

    CAS  PubMed  Google Scholar 

  • Gotthardt M, Hammer RE, Hubner N, Monti J, Witt CC, McNabb M, et al. (2003) Conditional expression of mutant M-line titins results in cardiomyopathy with altered sarcomere structure. J Biol Chem 278:6059–6065.

    CAS  PubMed  Google Scholar 

  • Granzier HL, Labeit S (2004) The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ Res 94:284–295.

    CAS  PubMed  Google Scholar 

  • Grater F, Shen J, Jiang H, Gautel M, Grubmuller H (2005) Mechanically induced titin kinase activation studied by force-probe molecular dynamics simulations. Biophys J 88:790–804.

    PubMed  Google Scholar 

  • Greaser M (2001) Identification of new repeating motifs in titin. Proteins 43:145–149.

    CAS  PubMed  Google Scholar 

  • Greaser ML, Krzesinski PR, Warren CM, Kirkpatrick B, Campbell KS, Moss RL (2005) Developmental changes in rat cardiac titin/connectin: transitions in normal animals and in mutants with a delayed pattern of isoform transition. J Muscle Res Cell Motil 26:325–332.

    CAS  PubMed  Google Scholar 

  • Gregorio CC, Perry CN, McElhinny AS (2005) Functional properties of the titin/connectin-associated proteins, the muscle-specific RING finger proteins (MURFs), in striated muscle. J Muscle Res Cell Motil 26:389–400.

    CAS  PubMed  Google Scholar 

  • Gregorio CC, Trombitas K, Centner T, Kolmerer B, Stier G, Kunke K, et al. (1998) The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity. J Cell Biol 143:1013–1027.

    CAS  PubMed  Google Scholar 

  • Gutierrez-Cruz G, Van Heerden AH, Wang K (2001) Modular motif, structural folds and affinity profiles of the PEVK segment of human fetal skeletal muscle titin. J Biol Chem 276:7442–7449.

    CAS  PubMed  Google Scholar 

  • Hackman P, Vihola A, Haravuori H, Marchand S, Sarparanta J, De Seze J, et al. (2002) Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am J Hum Genet 71:492–500.

    CAS  PubMed  Google Scholar 

  • Hayashi T, Arimura T, Itoh-Satoh M, Ueda K, Hohda S, Inagaki N, et al. (2004) Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J Am Coll Cardiol 44:2192–2201.

    CAS  PubMed  Google Scholar 

  • Hein S, Kostin S, Heling A, Maeno Y, Schaper J (2000) The role of the cytoskeleton in heart failure. Cardiovasc Res 45:273–278.

    CAS  PubMed  Google Scholar 

  • Hein S, Schaper J (2002) Weakness of a giant: mutations of the sarcomeric protein titin. Trends Mol Med 8:311–313.

    CAS  PubMed  Google Scholar 

  • Heineke J, Kempf T, Kraft T, Hilfiker A, Morawietz H, Scheubel RJ, et al. (2003) Downregulation of cytoskeletal muscle LIM protein by nitric oxide: impact on cardiac myocyte hypertrophy. Circulation 107:1424–1432.

    CAS  PubMed  Google Scholar 

  • Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600.

    CAS  PubMed  Google Scholar 

  • Heineke J, Ruetten H, Willenbockel C, Gross SC, Naguib M, Schaefer A, et al. (2005) Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc. Proc Natl Acad Sci USA 102:1655–1660.

    CAS  PubMed  Google Scholar 

  • Helmes M, Lim CC, Liao R, Bharti A, Cui L, Sawyer DB (2003) Titin determines the Frank-Starling relation in early diastole. J Gen Physiol 121:97–110.

    CAS  PubMed  Google Scholar 

  • Helmes M, Trombitas K, Granzier H (1996) Titin develops restoring force in rat cardiac myocytes. Circ Res 79:619–626.

    CAS  PubMed  Google Scholar 

  • Hentzen ER, Lahey M, Peters D, Mathew L, Barash IA, Friden J, et al. (2006) Stress-dependent and -independent expression of the myogenic regulatory factors and the MARP genes after eccentric contractions in rats. J Physiol 570:157–167.

    CAS  PubMed  Google Scholar 

  • Hoover HE, Thuerauf DJ, Martindale JJ, Glembotski CC (2000) alphaB-crystallin gene induction and phosphorylation by MKK6-activated p38. A potential role for alphaB-crystallin as a target of the p38 branch of the cardiac stress response. J Biol Chem 275:23825–23833.

    CAS  PubMed  Google Scholar 

  • Horowits R (1999) The physiological role of titin in striated muscle. Rev Physiol Biochem Pharmacol 138:57–96.

    CAS  PubMed  Google Scholar 

  • Horowits R (2006) Nebulin regulation of actin filament lengths: new angles. Trends Cell Biol 16:121–124.

    CAS  PubMed  Google Scholar 

  • Hoshijima M (2006) Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am J Physiol Heart Circ Physiol 290:H1313–H1325.

    CAS  PubMed  Google Scholar 

  • Houmeida A, Holt J, Tskhovrebova L, Trinick J (1995) Studies of the interaction between titin and myosin. J Cell Biol 131:1471–1481.

    CAS  PubMed  Google Scholar 

  • Huebsch KA, Kudryashova E, Wooley CM, Sher RB, Seburn KL, Spencer MJ, et al. (2005) Mdm muscular dystrophy: interactions with calpain 3 and a novel functional role for titin’s N2A domain. Hum Mol Genet 14:2801–2811.

    CAS  PubMed  Google Scholar 

  • Ikeda K, Emoto N, Matsuo M, Yokoyama M (2003) Molecular identification and characterization of a novel nuclear protein whose expression is up-regulated in insulin-resistant animals. J Biol Chem 278:3514–3520.

    CAS  PubMed  Google Scholar 

  • Itoh-Satoh M, Hayashi T, Nishi H, Koga Y, Arimura T, Koyanagi T, et al. (2002) Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem Biophys Res Commun 291:385–393.

    CAS  PubMed  Google Scholar 

  • Johannessen M, Moller S, Hansen T, Moens U, Van Ghelue M (2006) The multifunctional roles of the four-and-a-half-LIM only protein FHL2. Cell Mol Life Sci 63:268–284.

    CAS  PubMed  Google Scholar 

  • Joseph C, Stier G, O‘Brien R, Politou AS, Atkinson RA, Bianco A, et al. (2001) A structural characterization of the interactions between titin Z-repeats and the alpha-actinin C-terminal domain. Biochemistry 40:4957–4965.

    CAS  PubMed  Google Scholar 

  • Kazmierski ST, Antin PB, Witt CC, Huebner N, McElhinny AS, Labeit S, et al. (2003) The complete mouse nebulin gene sequence and the identification of cardiac nebulin. J Mol Biol 328:835–846.

    CAS  PubMed  Google Scholar 

  • Kemp TJ, Sadusky TJ, Saltisi F, Carey N, Moss J, Yang SY, et al. (2000) Identification of Ankrd2, a novel skeletal muscle gene coding for a stretch-responsive ankyrin-repeat protein. Genomics 66:229–241.

    CAS  PubMed  Google Scholar 

  • Kim K, Keller TC 3rd (2002) Smitin, a novel smooth muscle titin-like protein, interacts with myosin filaments in vivo and in vitro. J Cell Biol 156:101–111.

    CAS  PubMed  Google Scholar 

  • Knoll R, Hoshijima M, Chien K (2003) Cardiac mechanotransduction and implications for heart disease. J Mol Med 81:750–756.

    PubMed  Google Scholar 

  • Knoll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I, Bang ML, et al. (2002) The cardiac mechanical stretch sensor machinery involves a Z-disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111:943–955.

    CAS  PubMed  Google Scholar 

  • Kojic S, Medeot E, Guccione E, Krmac H, Zara I, Martinelli V, et al. (2004) The Ankrd2 protein, a link between the sarcomere and the nucleus in skeletal muscle. J Mol Biol 339:313–325.

    CAS  PubMed  Google Scholar 

  • Kontrogianni-Konstantopoulos A, Bloch RJ (2003) The hydrophilic domain of small ankyrin-1 interacts with the two N-terminal immunoglobulin domains of titin. J Biol Chem 278:3985–3991.

    CAS  PubMed  Google Scholar 

  • Kontrogianni-Konstantopoulos A, Catino DH, Strong JC, Sutter S, Borisov AB, Pumplin DW, et al. (2006) Obscurin modulates the assembly and organization of sarcomeres and the sarcoplasmic reticulum. FASEB J 20:2102–2111.

    CAS  PubMed  Google Scholar 

  • Kontrogianni-Konstantopoulos A, Jones EM, Van Rossum DB, Bloch RJ (2003) Obscurin is a ligand for small ankyrin 1 in skeletal muscle. Mol Biol Cell 14:1138–1148.

    CAS  PubMed  Google Scholar 

  • Kruger M, Kohl T, Linke WA (2006) Developmental changes in passive stiffness and myofilament Ca2+ sensitivity due to titin and troponin-I isoform switching are not critically triggered by birth. Am J Physiol Heart Circ Physiol 291:H496–H506.

    PubMed  Google Scholar 

  • Kruger M, Linke WA (2006) Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension. J Muscle Res Cell Motil 27:435–444.

    PubMed  Google Scholar 

  • Kruger M, Sachse C, Zimmermann WH, Eschenhagen T, Klede S, Linke WA (2008) Thyroid hormone regulates developmental titin isoform transitions via the phosphatidylinositol-3-kinase/AKT pathway. Circ Res 102:439–447.

    PubMed  Google Scholar 

  • Kulke M, Fujita-Becker S, Rostkova E, Neagoe C, Labeit D, Manstein DJ, et al. (2001) Interaction between PEVK-titin and actin filaments: origin of a viscous force component in cardiac myofibrils. Circ Res 89:874–881.

    CAS  PubMed  Google Scholar 

  • Kuo H, Chen J, Ruiz-Lozano P, Zou Y, Nemer M, Chien KR (1999) Control of segmental expression of the cardiac-restricted ankyrin repeat protein gene by distinct regulatory pathways in murine cardiogenesis. Development 126:4223–4234.

    CAS  PubMed  Google Scholar 

  • Labeit D, Watanabe K, Witt C, Fujita H, Wu Y, Lahmers S, et al. (2003) Calcium-dependent molecular spring elements in the giant protein titin. Proc Natl Acad Sci USA 100:13716–13721.

    CAS  PubMed  Google Scholar 

  • Labeit S, Barlow DP, Gautel M, Gibson T, Holt J, Hsieh CL, et al. (1990) A regular pattern of two types of 100-residue motif in the sequence of titin. Nature 345:273–276.

    CAS  PubMed  Google Scholar 

  • Labeit S, Kolmerer B (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296.

    CAS  PubMed  Google Scholar 

  • Labeit S, Kolmerer B, Linke WA (1997) The giant protein titin. Emerging roles in physiology and pathophysiology. Circ Res 80:290–294.

    CAS  PubMed  Google Scholar 

  • Labeit S, Lahmers S, Burkart C, Fong C, McNabb M, Witt S, et al. (2006) Expression of distinct classes of titin isoforms in striated and smooth muscles by alternative splicing, and their conserved interaction with filamins. J Mol Biol 362:664–681.

    CAS  PubMed  Google Scholar 

  • Lahmers S, Wu Y, Call DR, Labeit S, Granzier H (2004) Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ Res 94:505–513.

    CAS  PubMed  Google Scholar 

  • Lange S, Auerbach D, McLoughlin P, Perriard E, Schafer BW, Perriard JC, et al. (2002) Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL-2. J Cell Sci 115:4925–4936.

    CAS  PubMed  Google Scholar 

  • Lange S, Ehler E, Gautel M (2006) From A to Z and back? Multicompartment proteins in the sarcomere. Trends Cell Biol 16:11–18.

    CAS  PubMed  Google Scholar 

  • Lange S, Himmel M, Auerbach D, Agarkova I, Hayess K, Furst DO, et al. (2005a) Dimerisation of myomesin: implications for the structure of the sarcomeric M-band. J Mol Biol 345:289–298.

    CAS  PubMed  Google Scholar 

  • Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, et al. (2005b) The kinase domain of titin controls muscle gene expression and protein turnover. Science 308:1599–1603.

    CAS  PubMed  Google Scholar 

  • Launay N, Goudeau B, Kato K, Vicart P, Lilienbaum A (2006) Cell signaling pathways to alphaB-crystallin following stresses of the cytoskeleton. Exp Cell Res 312:3570–3584.

    CAS  PubMed  Google Scholar 

  • Leake MC, Grutzner A, Kruger M, Linke WA (2006) Mechanical properties of cardiac titin’s N2B-region by single-molecule atomic force spectroscopy. J Struct Biol 155:263–272.

    CAS  PubMed  Google Scholar 

  • Lee EH, Gao M, Pinotsis N, Wilmanns M, Schulten K (2006) Mechanical strength of the titin Z1Z2-telethonin complex. Structure 14:497–509.

    CAS  PubMed  Google Scholar 

  • Li H, Linke WA, Oberhauser AF, Carrion-Vazquez M, Kerkvliet JG, Lu H, et al. (2002) Reverse engineering of the giant muscle protein titin. Nature 418:998–1002.

    CAS  PubMed  Google Scholar 

  • Linke WA (2008) Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc Res 77:637–648.

    CAS  PubMed  Google Scholar 

  • Linke WA, Fernandez JM (2002) Cardiac titin: molecular basis of elasticity and cellular contribution to elastic and viscous stiffness components in myocardium. J Muscle Res Cell Motil 23:483–497.

    PubMed  Google Scholar 

  • Linke WA, Ivemeyer M, Labeit S, Hinssen H, Ruegg JC, Gautel M (1997) Actin-titin interaction in cardiac myofibrils: probing a physiological role. Biophys J 73:905–919.

    CAS  PubMed  Google Scholar 

  • Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Ruegg JC, Labeit S (1996) Towards a molecular understanding of the elasticity of titin. J Mol Biol 261:62–71.

    CAS  PubMed  Google Scholar 

  • Linke WA, Kulke M, Li H, Fujita-Becker S, Neagoe C, Manstein DJ, et al. (2002) PEVK domain of titin: an entropic spring with actin-binding properties. J Struct Biol 137:194–205.

    CAS  PubMed  Google Scholar 

  • Linke WA, Popov VI, Pollack GH (1994) Passive and active tension in single cardiac myofibrils. Biophys J 67:782–792.

    CAS  PubMed  Google Scholar 

  • Linke WA, Rudy DE, Centner T, Gautel M, Witt C, Labeit S, et al. (1999) I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol 146:631–644.

    CAS  PubMed  Google Scholar 

  • Liversage AD, Holmes D, Knight PJ, Tskhovrebova L, Trinick J (2001) Titin and the sarcomere symmetry paradox. J Mol Biol 305:401–409.

    CAS  PubMed  Google Scholar 

  • Lorenzen-Schmidt I, Stuyvers BD, ter Keurs HE, Date MO, Hoshijima M, Chien KR, et al. (2005) Young MLP deficient mice show diastolic dysfunction before the onset of dilated cardiomyopathy. J Mol Cell Cardiol 39:241–250.

    CAS  PubMed  Google Scholar 

  • Lu S, Carroll SL, Herrera AH, Ozanne B, Horowits R (2003) New N-RAP-binding partners alpha-actinin, filamin and Krp1 detected by yeast two-hybrid screening: implications for myofibril assembly. J Cell Sci 116:2169–2178.

    CAS  PubMed  Google Scholar 

  • Luther PK, Squire JM (2002) Muscle Z-band ultrastructure: titin Z-repeats and Z-band periodicities do not match. J Mol Biol 319:1157–1164.

    CAS  PubMed  Google Scholar 

  • Ma K, Forbes JG, Gutierrez-Cruz G, Wang K (2006) Titin as a giant scaffold for integrating stress and Src homology domain 3-mediated signaling pathways: the clustering of novel overlap ligand motifs in the elastic PEVK segment. J Biol Chem 281:27539–27556.

    CAS  PubMed  Google Scholar 

  • Ma K, Kan L, Wang K (2001) Polyproline II helix is a key structural motif of the elastic PEVK segment of titin. Biochemistry 40:3427–3438.

    CAS  PubMed  Google Scholar 

  • Ma K, Wang K (2003) Malleable conformation of the elastic PEVK segment of titin: non-co-operative interconversion of polyproline II helix, beta-turn and unordered structures. Biochem J 374:687–695.

    CAS  PubMed  Google Scholar 

  • Machado C, Andrew DJ (2000) Titin as a chromosomal protein. Adv Exp Med Biol 481:221–232.

    CAS  PubMed  Google Scholar 

  • Machado C, Sunkel CE, Andrew DJ (1998) Human autoantibodies reveal titin as a chromosomal protein. J Cell Biol 141:321–333.

    CAS  PubMed  Google Scholar 

  • MacKenna D, Summerour SR, Villarreal FJ (2000) Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res 46:257–263.

    CAS  PubMed  Google Scholar 

  • Makarenko I, Opitz CA, Leake MC, Neagoe C, Kulke M, Gwathmey JK, et al. (2004) Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ Res 95:708–716.

    CAS  PubMed  Google Scholar 

  • Matsumoto Y, Hayashi T, Inagaki N, Takahashi M, Hiroi S, Nakamura T, et al. (2005) Functional analysis of titin/connectin N2-B mutations found in cardiomyopathy. J Muscle Res Cell Motil 26:367–374.

    CAS  PubMed  Google Scholar 

  • Mayans O, van der Ven PF, Wilm M, Mues A, Young P, Furst DO, et al. (1998) Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 395:863–869.

    CAS  PubMed  Google Scholar 

  • McElhinny AS, Kakinuma K, Sorimachi H, Labeit S, Gregorio CC (2002) Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1. J Cell Biol 157:125–136.

    CAS  PubMed  Google Scholar 

  • McElhinny AS, Perry CN, Witt CC, Labeit S, Gregorio CC (2004) Muscle-specific RING finger-2 (MURF-2) is important for microtubule, intermediate filament and sarcomeric M-line maintenance in striated muscle development. J Cell Sci 117:3175–3188.

    CAS  PubMed  Google Scholar 

  • McElhinny AS, Schwach C, Valichnac M, Mount-Patrick S, Gregorio CC (2005) Nebulin regulates the assembly and lengths of the thin filaments in striated muscle. J Cell Biol 170:947–957.

    CAS  PubMed  Google Scholar 

  • McGrath MJ, Cottle DL, Nguyen MA, Dyson JM, Coghill ID, Robinson PA, et al. (2006) Four and a half LIM protein 1 binds myosin-binding protein C and regulates myosin filament formation and sarcomere assembly. J Biol Chem 281:7666–7683.

    CAS  PubMed  Google Scholar 

  • Miller MK, Bang ML, Witt CC, Labeit D, Trombitas C, Watanabe K, et al. (2003) The muscle ankyrin repeat proteins: CARP, ankrd2/Arpp and DARP as a family of titin filament-based stress response molecules. J Mol Biol 333:951–964.

    CAS  PubMed  Google Scholar 

  • Miller MK, Granzier H, Ehler E, Gregorio CC (2004) The sensitive giant: the role of titin-based stretch sensing complexes in the heart. Trends Cell Biol 14:119–126.

    CAS  PubMed  Google Scholar 

  • Millevoi S, Trombitas K, Kolmerer B, Kostin S, Schaper J, Pelin K, et al. (1998) Characterization of nebulette and nebulin and emerging concepts of their roles for vertebrate Z-discs. J Mol Biol 282:111–123.

    CAS  PubMed  Google Scholar 

  • Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6:56–68.

    CAS  PubMed  Google Scholar 

  • Moncman CL, Wang K (1995) Nebulette: a 107 kD nebulin-like protein in cardiac muscle. Cell Motil Cytoskeleton 32:205–225.

    CAS  PubMed  Google Scholar 

  • Mrosek M, Labeit D, Witt S, Heerklotz H, von Castelmur E, Labeit S, Mayans O (2007) Molecular determinants for the recruitment of the ubiquitin-ligase MuRF-1 onto M-line titin. FASEB J 21:1383–1392.

    CAS  PubMed  Google Scholar 

  • Mues A, van der Ven PF, Young P, Furst DO, Gautel M (1998) Two immunoglobulin-like domains of the Z-disc portion of titin interact in a conformation-dependent way with telethonin. FEBS Lett 428:111–114.

    CAS  PubMed  Google Scholar 

  • Musa H, Meek S, Gautel M, Peddie D, Smith AJ, Peckham M (2006) Targeted homozygous deletion of M-band titin in cardiomyocytes prevents sarcomere formation. J Cell Sci 119:4322–4331.

    CAS  PubMed  Google Scholar 

  • Nagueh SF, Shah G, Wu Y, Torre-Amione G, King NM, Lahmers S, et al. (2004) Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 110:155–162.

    CAS  PubMed  Google Scholar 

  • Nagy A, Cacciafesta P, Grama L, Kengyel A, Malnasi-Csizmadia A, Kellermayer MS (2004) Differential actin binding along the PEVK domain of skeletal muscle titin. J Cell Sci 117:5781–5789.

    CAS  PubMed  Google Scholar 

  • Neagoe C, Kulke M, del Monte F, Gwathmey JK, de Tombe PP, Hajjar RJ, et al. (2002) Titin isoform switch in ischemic human heart disease. Circulation 106:1333–1341.

    PubMed  Google Scholar 

  • Neagoe C, Opitz CA, Makarenko I, Linke WA (2003) Gigantic variety: expression patterns of titin isoforms in striated muscles and consequences for myofibrillar passive stiffness. J Muscle Res Cell Motil 24:175–189.

    CAS  PubMed  Google Scholar 

  • Obermann WM, Gautel M, Weber K, Furst DO (1997) Molecular structure of the sarcomeric M band: mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J 16:211–220.

    CAS  PubMed  Google Scholar 

  • Ohtsuka H, Yajima H, Maruyama K, Kimura S (1997) The N-terminal Z repeat 5 of connectin/titin binds to the C-terminal region of alpha-actinin. Biochem Biophys Res Commun 235:1–3.

    CAS  PubMed  Google Scholar 

  • Ojima K, Ono Y, Hata S, Koyama S, Doi N, Sorimachi H (2005) Possible functions of p94 in connectin-mediated signaling pathways in skeletal muscle cells. J Muscle Res Cell Motil 26:409–417.

    CAS  PubMed  Google Scholar 

  • Olson EN (2006) Gene regulatory networks in the evolution and development of the heart. Science 313:1922–1927.

    CAS  PubMed  Google Scholar 

  • Ono Y, Torii F, Ojima K, Doi N, Yoshioka K, Kawabata Y, et al. (2006) Suppressed disassembly of autolyzing p94/CAPN3 by N2A connectin/titin in a genetic reporter system. J Biol Chem 281:18519–18531.

    CAS  PubMed  Google Scholar 

  • Opitz CA, Kulke M, Leake MC, Neagoe C, Hinssen H, Hajjar RJ, et al. (2003) Damped elastic recoil of the titin spring in myofibrils of human myocardium. Proc Natl Acad Sci USA 100:12688–12693.

    CAS  PubMed  Google Scholar 

  • Opitz CA, Leake MC, Makarenko I, Benes V, Linke WA (2004) Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ Res 94:967–975.

    CAS  PubMed  Google Scholar 

  • Opitz CA, Linke WA (2005) Plasticity of cardiac titin/connectin in heart development. J Muscle Res Cell Motil 26:333–342.

    CAS  PubMed  Google Scholar 

  • Peng J, Raddatz K, Molkentin JD, Wu Y, Labeit S, Granzier H, et al. (2007) Cardiac hypertrophy and reduced contractility in hearts deficient in the titin kinase region. Circulation 115:743–751.

    CAS  PubMed  Google Scholar 

  • Perriard JC, Hirschy A, Ehler E (2003) Dilated cardiomyopathy: a disease of the intercalated disc? Trends Cardiovasc Med 13:30–38.

    PubMed  Google Scholar 

  • Prado LG, Makarenko I, Andresen C, Kruger M, Opitz CA, Linke WA (2005) Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles. J Gen Physiol 126:461–480.

    CAS  PubMed  Google Scholar 

  • Purcell NH, Darwis D, Bueno OF, Muller JM, Schule R, Molkentin JD (2004) Extracellular signal-regulated kinase 2 interacts with and is negatively regulated by the LIM-only protein FHL2 in cardiomyocytes. Mol Cell Biol 24:1081–1095.

    CAS  PubMed  Google Scholar 

  • Pyle WG, Solaro RJ (2004) At the crossroads of myocardial signaling: the role of Z-discs in intracellular signaling and cardiac function. Circ Res 94:296–305.

    CAS  PubMed  Google Scholar 

  • Radke MH, Peng J, Wu Y, McNabb M, Nelson OL, Granzier H, et al. (2007) Targeted deletion of titin N2B-region leads to diastolic dysfunction and cardiac atrophy. Proc Natl Acad Sci USA 104:3444–3449.

    CAS  PubMed  Google Scholar 

  • Raynaud F, Astier C, Benyamin Y (2004) Evidence for a direct but sequential binding of titin to tropomyosin and actin filaments. Biochim Biophys Acta 1700:171–178.

    CAS  PubMed  Google Scholar 

  • Raynaud F, Fernandez E, Coulis G, Aubry L, Vignon X, Bleimling N, et al. (2005) Calpain 1-titin interactions concentrate calpain 1 in the Z-band edges and in the N2-line region within the skeletal myofibril. FEBS J 272:2578–2590.

    CAS  PubMed  Google Scholar 

  • Romer LH, Birukov KG, Garcia JG (2006) Focal adhesions: paradigm for a signalling nexus. Circ Res 98:606–616.

    CAS  PubMed  Google Scholar 

  • Samarel AM (2005) Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am J Physiol Heart Circ Physiol 289:H2291–H2301.

    CAS  PubMed  Google Scholar 

  • Samson T, Smyth N, Janetzky S, Wendler O, Muller JM, Schule R, et al. (2004) The LIM-only proteins FHL2 and FHL3 interact with alpha- and beta-subunits of the muscle alpha7beta1 integrin receptor. J Biol Chem 279:28641–28652.

    CAS  PubMed  Google Scholar 

  • Satoh M, Takahashi M, Sakamoto T, Hiroe M, Marumo F, Kimura A (1999) Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene. Biochem Biophys Res Commun 262:411–417.

    CAS  PubMed  Google Scholar 

  • Schellings MW, Pinto YM, Heymans S (2004) Matricellular proteins in the heart: possible role during stress and remodeling. Cardiovasc Res 64:24–31.

    CAS  PubMed  Google Scholar 

  • Schoenauer R, Bertoncini P, Machaidze G, Aebi U, Perriard JC, Hegner M, et al. (2005) Myomesin is a molecular spring with adaptable elasticity. J Mol Biol 349:367–379.

    CAS  PubMed  Google Scholar 

  • Seeley M, Huang W, Chen Z, Wolff WO, Lin X, Xu X (2007) Depletion of zebrafish titin reduces cardiac contractility by disrupting the assembly of Z-discs and A-bands. Circ Res 100:238–245.

    CAS  PubMed  Google Scholar 

  • Siu BL, Niimura H, Osborne JA, Fatkin D, MacRae C, Solomon S, et al. (1999) Familial dilated cardiomyopathy locus maps to chromosome 2q31. Circulation 99:1022–1026.

    CAS  PubMed  Google Scholar 

  • Sorimachi H, Freiburg A, Kolmerer B, Ishiura S, Stier G, Gregorio CC, et al. (1997) Tissue-specific expression and alpha-actinin binding properties of the Z-disc titin: implications for the nature of vertebrate Z-discs. J Mol Biol 270:688–695.

    CAS  PubMed  Google Scholar 

  • Sorimachi H, Kinbara K, Kimura S, Takahashi M, Ishiura S, Sasagawa N, et al. (1995) Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence. J Biol Chem 270:31158–31162.

    CAS  PubMed  Google Scholar 

  • Sun J, Yan G, Ren A, You B, Liao JK (2006) FHL2/SLIM3 decreases cardiomyocyte survival by inhibitory interaction with sphingosine kinase-1. Circ Res 99:468–476.

    CAS  PubMed  Google Scholar 

  • Taveau M, Bourg N, Sillon G, Roudaut C, Bartoli M, Richard I (2003) Calpain 3 is activated through autolysis within the active site and lyses sarcomeric and sarcolemmal components. Mol Cell Biol 23:9127–9135.

    CAS  PubMed  Google Scholar 

  • Trinick J, Tskhovrebova L (1999) Titin: a molecular control freak. Trends Cell Biol 9:377–380.

    CAS  PubMed  Google Scholar 

  • Trombitas K, Freiburg A, Centner T, Labeit S, Granzier H (1999) Molecular dissection of N2B cardiac titin’s extensibility. Biophys J 77:3189–3196.

    CAS  PubMed  Google Scholar 

  • Trombitas K, Granzier H (1997) Actin removal from cardiac myocytes shows that near Z line titin attaches to actin while under tension. Am J Physiol 273:C662–C670.

    CAS  PubMed  Google Scholar 

  • Trombitas K, Wu Y, Labeit D, Labeit S, Granzier H (2001) Cardiac titin isoforms are coexpressed in the half-sarcomere and extend independently. Am J Physiol Heart Circ Physiol 281:H1793–H1799.

    CAS  PubMed  Google Scholar 

  • Tskhovrebova L, Trinick J (2004) Properties of titin immunoglobulin and fibronectin-3 domains. J Biol Chem 279:46351–46354.

    CAS  PubMed  Google Scholar 

  • Tsukamoto Y, Senda T, Nakano T, Nakada C, Hida T, Ishiguro N, et al. (2002) Arpp, a new homolog of carp, is preferentially expressed in type 1 skeletal muscle fibers and is markedly induced by denervation. Lab Invest 82:645–655.

    CAS  PubMed  Google Scholar 

  • Udd B, Vihola A, Sarparanta J, Richard I, Hackman P (2005) Titinopathies and extension of the M-line mutation phenotype beyond distal myopathy and LGMD2J. Neurology 64:636–642.

    CAS  PubMed  Google Scholar 

  • van de Klundert FA, Gijsen ML, van den IJssel PR, Snoeckx LH, de Jong WW (1998) Alpha B-crystallin and hsp25 in neonatal cardiac cells–differences in cellular localization under stress conditions. Eur J Cell Biol 75:38–45.

    PubMed  Google Scholar 

  • Van den Bergh PY, Bouquiaux O, Verellen C, Marchand S, Richard I, Hackman P, et al. (2003) Tibial muscular dystrophy in a Belgian family. Ann Neurol 54:248–251.

    PubMed  Google Scholar 

  • van der Ven PF, Bartsch JW, Gautel M, Jockusch H, Furst DO (2000) A functional knock-out of titin results in defective myofibril assembly. J Cell Sci 113:1405–1414.

    PubMed  Google Scholar 

  • van Heerebeek L, Borbely A, Niessen HW, Bronzwaer JG, van der Velden J, Stienen GJ, et al. (2006) Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113:1966–1973.

    PubMed  Google Scholar 

  • Wang X, Klevitsky R, Huang W, Glasford J, Li F, Robbins J (2003) AlphaB-crystallin modulates protein aggregation of abnormal desmin. Circ Res 93:998–1005.

    CAS  PubMed  Google Scholar 

  • Warren CM, Krzesinski PR, Campbell KS, Moss RL, Greaser ML (2004) Titin isoform changes in rat myocardium during development. Mech Dev 121:1301–1312.

    CAS  PubMed  Google Scholar 

  • Weinert S, Bergmann N, Luo X, Erdmann B, Gotthardt M (2006) M-line-deficient titin causes cardiac lethality through impaired maturation of the sarcomere. J Cell Biol 173:559–570.

    CAS  PubMed  Google Scholar 

  • Wernyj RP, Ewing CM, Isaacs WB (2001) Multiple antibodies to titin immunoreact with AHNAK and localize to the mitotic spindle machinery. Cell Motil Cytoskeleton 50:101–113.

    CAS  PubMed  Google Scholar 

  • Wilding JR, Lygate CA, Davies KE, Neubauer S, Clarke K (2006) MLP accumulation and remodelling in the infarcted rat heart. Eur J Heart Fail 8:343–346.

    CAS  PubMed  Google Scholar 

  • Willis MS, Ike C, Li L, Wang DZ, Glass DJ, Patterson C (2007) Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo. Circ Res 100:456–459.

    CAS  PubMed  Google Scholar 

  • Willis MS, Patterson C (2006) Into the heart: the emerging role of the ubiquitin-proteasome system. J Mol Cell Cardiol 41:567–579.

    CAS  PubMed  Google Scholar 

  • Witt CC, Burkart C, Labeit D, McNabb M, Wu Y, Granzier H, et al. (2006) Nebulin regulates thin filament length, contractility, and Z-disk structure in vivo. EMBO J 25:3843–3855.

    CAS  PubMed  Google Scholar 

  • Witt CC, Ono Y, Puschmann E, McNabb M, Wu Y, Gotthardt M, et al. (2004) Induction and myofibrillar targeting of CARP, and suppression of the Nkx2.5 pathway in the MDM mouse with impaired titin-based signaling. J Mol Biol 336:145–154.

    CAS  PubMed  Google Scholar 

  • Witt SH, Granzier H, Witt CC, Labeit S (2005a) MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination. J Mol Biol 350:713–722.

    CAS  PubMed  Google Scholar 

  • Witt SH, Labeit D, Granzier H, Labeit S, Witt CC (2005b) Dimerization of the cardiac ankyrin protein CARP: implications for MARP titin-based signaling. J Muscle Res Cell Motil 26:401–408.

    CAS  PubMed  Google Scholar 

  • Wu Y, Cazorla O, Labeit D, Labeit S, Granzier H (2000) Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol 32:2151–2162.

    CAS  PubMed  Google Scholar 

  • Wu Y, Labeit S, LeWinter MM, Granzier H (2002) Titin: an endosarcomeric protein that modulates myocardial stiffness in DCM. J Card Fail 8(6 Suppl):S276–S286.

    CAS  PubMed  Google Scholar 

  • Wu Y, Peng J, Campbell KB, Labeit S, Granzier H (2007) Hypothyroidism leads to increased collagen-based stiffness and re-expression of large cardiac titin isoforms with high compliance. J Mol Cell Cardiol 42:186–195.

    CAS  PubMed  Google Scholar 

  • Xu X, Meiler SE, Zhong TP, Mohideen M, Crossley DA, Burggren WW, et al. (2002) Cardiomyopathy in zebrafish due to mutation in an alternatively spliced exon of titin. Nat Genet 30:205–209.

    CAS  PubMed  Google Scholar 

  • Yamasaki R, Berri M, Wu Y, Trombitas K, McNabb M, Kellermayer MS, et al. (2001) Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1. Biophys J 81:2297–2313.

    CAS  PubMed  Google Scholar 

  • Yamasaki R, Wu Y, McNabb M, Greaser M, Labeit S, Granzier H (2002) Protein kinase-A phosphorylates titin’s cardiac-specific N2B domain and reduces passive tension in rat cardiac myocytes. Circ Res 90:1181–1188.

    CAS  PubMed  Google Scholar 

  • Young P, Ehler E, Gautel M (2001) Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly. J Cell Biol 154:123–136.

    CAS  PubMed  Google Scholar 

  • Young P, Ferguson C, Banuelos S, Gautel M (1998) Molecular structure of the sarcomeric Z-disk: two types of titin interactions lead to an asymmetrical sorting of alpha-actinin. EMBO J 17:1614–1624.

    CAS  PubMed  Google Scholar 

  • Zastrow MS, Flaherty DB, Benian GM, Wilson KL (2006) Nuclear titin interacts with A- and B-type lamins in vitro and in vivo. J Cell Sci 119:239–249.

    CAS  PubMed  Google Scholar 

  • Zolk O, Caroni P, Bohm M (2000) Decreased expression of the cardiac LIM domain protein MLP in chronic human heart failure. Circulation 101:2674–2677.

    CAS  PubMed  Google Scholar 

  • Zou P, Pinotsis N, Lange S, Song YH, Popov A, Mavridis I, et al. (2006) Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk. Nature 439:229–233.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank the Deutsche Forschungsgemeinschaft for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang A. Linke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Netherlands

About this chapter

Cite this chapter

Linke, W.A. (2009). Titin and Titin-Associated Proteins in Myocardial Stress-Sensing and Mechanical Dysfunction. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitivity of the Heart. Mechanosensitivity in Cells and Tissues, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2850-1_1

Download citation

Publish with us

Policies and ethics