Skip to main content

Introduction to Nonlinear Vibration and Control

  • Chapter
Nonlinear Vibration with Control

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 170))

The performance requirements of flexible structures are continually increasing. Often structures are required to have integrated control and sensor systems to carry out tasks such as limiting unwanted vibrations, detecting damage and in some cases changing the shape of the structure. These types of structures have become known as smart structures (sometimes called adaptive or intelligent structures). The ability to perform multiple tasks means that the smart structure is multifunctional. By their nature, these structures are typically highly flexible and are required to operate in a dynamic environment. As a result, the vibration behaviour of the structure is of critical importance. Not only is vibration important, it is often nonlinear, due to a range of effects which naturally arise in flexible structural dynamics. Applying control to the structure to limit unwanted vibration and to effect any shape changes also requires detailed knowledge of the vibration characteristics. This chapter introduces the basic ideas of nonlinear vibration and control, which will be used in later chapters to underpin the analysis of more complex structural elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beards, C. F. (1981). Vibration analysis and control system dynamics. Ellis Horwood.

    Google Scholar 

  • Bishop, R. E. D. and Johnson, D. C. (1960). The mechanics of vibration. Cambridge University Press.

    Google Scholar 

  • Brogliato, B. (1999). Nonsmooth mechanics: Models, dynamics and control. Springer-Verlag.

    Google Scholar 

  • Cartmell, M. (1990). Introduction to linear, parametric and nonlinear vibrations. Chapman and Hall.

    Google Scholar 

  • Clark, R. L., Saunders, W. R., and Gibbs, G. P. (1998). Adaptive structures; dynamics and control. John Wiley.

    Google Scholar 

  • Clough, R. W. and Penzien, J. (1993). Dynamics of Structures. McGraw-Hill. Second edition.

    Google Scholar 

  • Den Hartog, J. P. (1934). Mechanical Vibrations. McGraw-Hill: New York.

    Google Scholar 

  • di Bernardo, M., Budd, C. J., Champneys, A. R., and Kowalczyk, P. (2007). Piecewise-smooth dynamical systems: theory and applications. Springer-Verlag.

    Google Scholar 

  • Ewins, D. J. (2000). Modal Testing. Research Studies Press.

    Google Scholar 

  • Frish-Fay, R. (1962). Flexible Bars. Butterworths: London.

    Google Scholar 

  • Fuller, C. R., Elliot, S. J., and Nelson, P. A. (1996). Active control of vibration. Academic Press.

    Google Scholar 

  • Géradin, M. and Rixen, D. (1997). Mechanical Vibrations: Theory and Application to Structural Dynamics. Wiley Blackwell.

    Google Scholar 

  • Goodwin, G. C., Graebe, S. F., and Salgado, M. E. (2000). Control System Design. Pearson. Inman, D. J. (2006). Vibration with control. Wiley.

    Google Scholar 

  • Inman, D. J. (2007). Engineering vibration. Prentice Hall. Jordan, D. W. and Smith, P. (1999). Nonlinear ordinary differential equations; an introduction to dynamical systems. Oxford University Press. Third Edition. Krauskopf, B. (2005). Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers, chapter; Bifurcation analysis of lasers with delay, pages 147–183. Wiley.

    Google Scholar 

  • Leo, D. J. (2007). Smart material systems. Wiley.

    Google Scholar 

  • McLachlan, N. W. (1950). Ordinary non-linear differential equations. Oxford University Press.

    Google Scholar 

  • Meirovitch, L. (2001). Fundamentals of vibration. McGraw-Hill: New York.

    Google Scholar 

  • Moheimani, S. O. R., Halim, D., and Fleming, A. J. (2003). Spatial control of vibration. World Scientific.

    Google Scholar 

  • Moon, F. C. (1987). Chaotic vibrations: An introduction for applied scientists and engineers. John Wiley: New York.

    MATH  Google Scholar 

  • Moon, F. C. and Shaw, S. W. (1983). Chaotic vibrations of a beam with non-linear boundary conditions. International Journal of Non-Linear Mechanics, 18(6), 465–477.

    Article  MathSciNet  Google Scholar 

  • Nayfeh, A. H. and Mook, D. T. (1995). Nonlinear oscillations. John Wiley: New York.

    Book  Google Scholar 

  • Neill, D., Livelybrooks, D., and Donnelly, R. J. (2007). A pendulum experiment on added mass and the principle of equivalence. American Journal of Physics 75, 226–229.

    Article  Google Scholar 

  • Nelkon, M. (1969). Mechanics and properties of matter. Heinemann.

    Google Scholar 

  • Preumont, A. (2002). Vibration control of active structures. Kluwer: Dordrecht.

    MATH  Google Scholar 

  • Rayleigh, J. W. S. (1894a). Theory of sound: Volume 1. Macmillan and Co: London.

    Google Scholar 

  • Rayleigh, J. W. S. (1894b). Theory of sound: Volume 2. Macmillan and Co: London.

    Google Scholar 

  • Slotine, J.-J. E. and Li, W. (1991). Applied nonlinear control. Prentice Hall.

    Google Scholar 

  • Srinivasan, A. V. and McFarland, D. M. (2001). Smart structures. Cambridge.

    Google Scholar 

  • Thompson, J. M. T. and Champneys, A. R. (1996). From helix to localized writhing in the torsional post-buckling of elastic rods. Proceedings of the Royal Society A 452, 117–138.

    Article  MATH  MathSciNet  Google Scholar 

  • Thompson, J. M. T. and Stewart, H. B. (2002). Nonlinear dynamics and chaos. John Wiley: Chichester.

    MATH  Google Scholar 

  • Timoshenko, S. P. (1953). History of strength of materials. McGraw-Hill.

    Google Scholar 

  • van der Heijden, G. H. M. (2008). The nonlinear mechanics of slender structures undergoing large deformations. Available for download from G. H. M. van der Heijden's website.

    Google Scholar 

  • Virgin, L. N. (2007). Vibration of Axially-Loaded Structures. Cambridge.

    Google Scholar 

  • Weaver Jr, W., Timoshenko, S. P., and Young, D. (1990). Vibration problems in engineering. Wiley.

    Google Scholar 

  • Worden, K. and Tomlinson, G. R. (2000). Nonlinearity in structural dynamics. IOP.

    Google Scholar 

  • Worden, K., Bullough, W. A., and Haywood, J. (2003). Smart Technologies. World Scientific.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

(2010). Introduction to Nonlinear Vibration and Control. In: Wagg, D., Neild, S. (eds) Nonlinear Vibration with Control. Solid Mechanics and Its Applications, vol 170. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2837-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2837-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2836-5

  • Online ISBN: 978-90-481-2837-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics