Skip to main content

Secondary Mesenchyme Cells as Potential Stem Cells of the Sea Urchin Embryo

  • Chapter
  • First Online:

Abstract

In the last years, stem cells have been the subject of great interest. Although considerable progress has been made in this field, the signaling pathways and related molecules controlling stem cells behaviour still remain unclear. Among marine invertebrates, echinoderms have the attracting ability to regenerate parts of their bodies, involving stem cells recruitment, and thus providing themselves as excellent models for studies on stem cells in adult organisms. On the contrary, hardly any research focused on embryonic stem cells has been performed using echinoderm embryos, although they have been utilised extensively and with noteworthy results, for example, for studies on basic developmental biology. Indeed, the great amount of data accumulated over the years, the availability of new genomic and proteomic research tools, together with the advantage of experimental manipulation support the sea urchin embryo as a good candidate for detailed studies on embryonic stem cells. Here, we review fundamental findings concerning the two distinct populations of mesodermal cells in the sea urchin embryo, discussing the possibility to identify some of them as embryonic stem cells. In particular, secondary mesenchyme cells (SMCs) are a heterogeneous population of cells with several different fates and behaviours. Taken together, a number of evidence indicates that SMCs function as multipotent stem cells, thus sharing some features with vertebrate embryonic stem cells, including the neural crest cells. Our aim is to address new viewpoints for forthcoming studies on SMCs as well as to open new directions for research on fundamental mechanisms of stem cell biology exploiting the sea urchin embryo as a model system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akiyama Y, Hosoya T, Poole AM, Hotta Y (1996) The gcm-motif: A novel DNA-binding motif conserved in Drosophila and mammals. Proc Natl Acad Sci USA 93:14912–14916

    Article  CAS  Google Scholar 

  • Angerer LM, Angerer RC (2000) Animal-vegetal axis patterning mechanisms in the early sea urchin embryo. Dev Biol 218:1–12

    Article  CAS  Google Scholar 

  • Angerer LM, Angerer RC (2003) Patterning the sea urchin embryo: Gene regulatory networks, signaling pathways, and cellular interactions. Curr Top Dev Biol 53:159–198

    Article  CAS  Google Scholar 

  • Armstrong N, McClay DR (1994) Skeletal pattern is specified autonomously by the primary mesenchyme cells in sea urchin embryos. Dev Biol 162:329–338

    Article  CAS  Google Scholar 

  • Beniash E, Aizenberg J, Addadi L, Weiner S (1997) Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc R Soc Lond B Biol Sci 264:461–465

    Article  CAS  Google Scholar 

  • Bisgrove BW, Burke RD (1986) Development of serotonergic neurons in embryos of the sea Urchin, Strongylocentrotus purpuratus. Dev Growth Diff 28:569–574

    Article  Google Scholar 

  • Bishop CD, Burke RD (2007) Ontogeny of the holothurian larval nervous system: Evolution of larval forms. Dev Genes Evol 217:585–592

    Article  Google Scholar 

  • Bromham LD, Degnan BM (1999) Hemichordate and deuterostome evolution: Robust molecular phylogenetic support for a hemichordate plus echinoderm clade. Evol Dev 1:166–171

    Article  CAS  Google Scholar 

  • Burke RD (1981) Structure of the digestive tract of the pluteus larva of Dendraster excentricus (Echinodermata: Echinoida). Zoomorphology 98:209–225

    Article  Google Scholar 

  • Burke RD (1982) Echinoderm metamorphosis: Retraction and resorption of larval tissues. In: Lawrence JM (ed) International Echinoderms Conference. Tampa Bay, Balkema, Rotterdam, pp 513–518

    Google Scholar 

  • Burke RD, Alvarez CM (1988) Development of the esophageal muscles in embryos of the sea urchin Strongylocentrotus purpuratus. Cell Tissue Res 252:411–417

    Article  CAS  Google Scholar 

  • Byrne M, Nakajima Y, Chee FC, Burke RD (2007) Apical organs in echinoderm larvae: Insights into larval evolution in the Ambulacraria. Evol Dev 9(5):432–445

    Google Scholar 

  • Cai J, Olson JM, Rao MS, Stanley M, Taylor E, Ni HT (2005) Development of antibodies to human embryonic stem cell antigens. BMC Dev Biol 5:26

    Article  CAS  Google Scholar 

  • Cameron RA, Fraser SE, Britten RJ, Davidson EH (1991) Macromere cell fates during sea urchin development. Development 113:1085–1091

    CAS  Google Scholar 

  • Cavaleri F, Scholer HR (2003) Nanog: A new recruit to the embryonic stem cell orchestra. Cell 113:551–552

    Article  CAS  Google Scholar 

  • Chaffee RR, Mazia D (1963) Echinochrome synthesis in hybrid sea urchin embrovos. Dev Biol 7:502–512

    Article  CAS  Google Scholar 

  • Chiba S (2006) Notch signaling in stem cell systems. Stem Cells 24:2437–2447

    Article  CAS  Google Scholar 

  • Crawford B, Martin C (1998) Ultrastructure and differentiation of the larval esophageal muscle cells of the starfish Pisaster ochraceus. J Morphol 237:1–18

    Article  Google Scholar 

  • Dan K, Okazaki K (1956) Cyto-embryological studies of sea urchins. III. Role of the secondary mesenchyme cells in the formation of the primitive gut in sea urchin larvae. Biol Bull 110:29–42

    Article  Google Scholar 

  • Davidson EH, Cameron RA, Ransick A (1998) Specification of cell fate in the sea urchin embryo: Summary and some proposed mechanisms. Development 125:3269–3290

    CAS  Google Scholar 

  • Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C et al (2002a) A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. Dev Biol 246:162–190

    Article  CAS  Google Scholar 

  • Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan Z, Schilstra MJ, Clarke PJ, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002b) A genomic regulatory network for development. Science 295:1669–1678

    Article  CAS  Google Scholar 

  • Decker GL, Lennarz WJ (1988) Skeletogenesis in the sea urchin embryo. Development 103:231–247

    CAS  Google Scholar 

  • Delfino-Machín M, Chipperfield TR, Rodrigues FSLM, Kelsh RN (2007) The proliferating field of neural crest stem cells. Dev Dyn 236:3242–3254

    Article  CAS  Google Scholar 

  • Denham M, Conley B, Olsson F, Cole TJ, Mollard R (2005) Stem cells: An overview. Curr Protoc Cell Biol 23:23.1

    Google Scholar 

  • Driesch H (1892) The potency of the first two cleavage cells in echinoderm development. Ex-perimental production of partial and double formations. In: BH Willier, JM Oppenheimer (eds) Foundations of Experimental Embryology pp 38–55 (1974). Hafner, New York

    Google Scholar 

  • Duloquin L, Lhomond G, Gache C (2007) Localized VEGF signaling from ectoderm to mesen-chyme cells controls morphogenesis of the sea urchin embryo skeleton. Development 134:2293–2302

    Article  CAS  Google Scholar 

  • Egana AL, Ernst SG (2004) Sphedgehog is expressed by pigment cell precursors during early gastrulation in Strongylocentrotus purpuratus. Dev Dyn 231:370–378

    Article  CAS  Google Scholar 

  • Ettensohn CA (1990) The regulation of primary mesenchyme cell patterning. Dev Biol 140:261–271

    Article  CAS  Google Scholar 

  • Ettensohn CA (1992) Cell interactions and mesodermal cell fates in the sea urchin embryo. De-velopment Suppl 43–51

    Google Scholar 

  • Ettensohn CA, Malinda KM (1993) Size regulation and morphogenesis: A cellular analysis of skeletogenesis in the sea urchin embryo. Development 119:155–167

    CAS  Google Scholar 

  • Ettensohn CA, McClay DR (1988) Cell lineage conversion in the sea urchin embryo. Dev Biol 125:396–409

    Article  CAS  Google Scholar 

  • Ettensohn CA, Ruffins SW (1993) Mesodermal cell interactions in the sea urchin embryo: Prop-erties of skeletogenic secondary mesenchyme cells. Development 117:1275–1285

    CAS  Google Scholar 

  • Ettensohn CA, Sweet HC (2000) Patterning the early sea urchin embryo. Curr Top Dev Biol 50:1–44

    Article  CAS  Google Scholar 

  • Ettensohn CA, Kitazawa C, Cheers MS, Leonard JD, Sharma T (2007) Gene regulatory networks and developmental plasticity in the early sea urchin embryo: Alternative deployment of the skeletogenic gene regulatory network. Development 134:3077–3087

    Article  CAS  Google Scholar 

  • Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389–396

    Article  CAS  Google Scholar 

  • Fernandez-Guerra A, Aze A, Morales J, Mulner-Lorillon O, Cosson B, Cormier P, Bradham C, Adams N, Robertson AJ, Marzluff WF, Coffman JA, Geneviere AM (2006) The genomic repertoire for cell cycle control and DNA metabolism in S. purpuratus. Dev Biol 300:238–251

    Article  CAS  Google Scholar 

  • Figeac N, Daczewska M, Marcelle C, Jagla K (2007) Muscle stem cells and model systems for their investigation. Dev Dyn 236:3332–3342

    Article  Google Scholar 

  • Fink RD, McClay DR (1985) Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells. Dev Biol 107:66–74

    Article  CAS  Google Scholar 

  • Fuchs S, Sommer L (2007) The neural crest: Understanding stem cell function in development and disease. Neurodegener Dis 4:6–12

    Article  Google Scholar 

  • Geneviere-Garrigues AM, Barakat A, Doree M, Moreau JL, Picard A (1995) Active cyclin B-cdc2 kinase does not inhibit DNA replication and cannot drive prematurely fertilized sea urchin eggs into mitosis. J Cell Sci 108:2693–2703

    CAS  Google Scholar 

  • Gibson AW, Burke RD (1985) The origin of pigment cells in embryos of the sea urchin Strongy-locentrotus purpuratus. Dev Biol 107:414–419

    Article  CAS  Google Scholar 

  • Gibson AW, Burke RD (1987) Migratory and invasive behavior of pigment cells in normal and animalized sea urchin embryos. Exp Cell Res 173:546–557

    Article  CAS  Google Scholar 

  • Griffiths M (1965) A study of the synthesis of naphthaquinone pigments by the larvae of two species of sea urchins and their reciprocal hybrids. Dev Biol 11:433–447

    Article  CAS  Google Scholar 

  • Gustafson T, Kinnander H (1956) Microaquaria for time-lapse cinematographic studies of morphogenesis in swimming larvae and observations on sea urchin gastrulation. Exp Cell Res 21:36–51

    Article  Google Scholar 

  • Gustafson T, Wolpert L (1963) Studies on the cellular basis of morphogenesis in the sea urchin embryo. Formation of the coelom, the mouth, and the primary pore-canal. Exp Cell Res 29:561–582

    Article  Google Scholar 

  • Hara Y, Katow H (2005) Exclusive expression of hedgehog in small micromere descendants dur-ing early embryogenesis in the sea urchin, Hemicentrotus pulcherrimus. Gene Exp Patterns 5:503–510

    Article  CAS  Google Scholar 

  • Hardin J (1996) The cellular basis of sea urchin gastrulation. Curr Top Dev Biol 33:159–262

    Article  CAS  Google Scholar 

  • Hardin J, Illingworth CA (2006) A homologue of snail is expressed transiently in subsets of mesenchyme cells in the sea urchin embryo and is down-regulated in axis-deficient embryos. Dev Dyn 235:3121–3131

    Article  CAS  Google Scholar 

  • Harkey MA, Whiteley HR, Whiteley AH (1992) Differential expressionof the msp 130 gene among skeletal lineage cells in the sea urchin embryo: A three dimensional in situ hybridization analysis. Mech Dev 37:173–184

    Article  CAS  Google Scholar 

  • Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, Buckley KM, Brockton V, Nair SV, Berney K, Fugmann SD, Anderson MK, Pancer Z, Cameron RA, Smith LC, Rast JP (2006) The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300:349–365

    Article  CAS  Google Scholar 

  • Hirokawa T, Komatsu M, Nakajima Y (2008) Development of the nervous system in the brittle star Amphipholis kochii. Dev Gens Evol 218:15–21

    Article  Google Scholar 

  • Hodor PG, Ettensohn CA (1998) The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo. Dev Biol 199:111–124

    Article  CAS  Google Scholar 

  • Hörstadius S (1939) The mechanics of sea urchin development, studied by operative methods. Biol Rev 14:132–179

    Article  Google Scholar 

  • Howard-Ashby M, Materna SC, Brown CT, Chen L, Cameron RA, Davidson EH (2006) Gene families encoding transcription factors expressed in early development of Strongylocentrotus purpuratus. Dev Biol 300:90–107

    Article  CAS  Google Scholar 

  • Ishimoda-Takagi T, Chino I, Sato H (1984) Evidence for the involvement of muscle tropomyosin in the contractile elements of the coelom-esophagus complex in sea urchin embryos. Dev Biol 105:365–376

    Article  CAS  Google Scholar 

  • Juliano CE, Voronina E, Stack C, Aldrich M, Cameron AR, Wessel GM (2006) Germ line de-terminants are not localized early in sea urchin development, but do accumulate in the small micromere lineage. Dev Biol 300:406–415

    Article  CAS  Google Scholar 

  • Katow H (2005) Multipotential cells in echinoderm: Origin and role in embryogenesis. Zool Sci 22:1387

    Article  Google Scholar 

  • Katow H, Yaguchi S, Kiyomoto M, Washio M (2004) The 5-HT receptor cell is a new member of secondary mesenchyme cell descendants and forms a major blastocoelar network in sea urchin larvae. Mech Dev 121:325–337

    Article  CAS  Google Scholar 

  • Katow H, Yaguchi S, Kyozuka K (2007) Serotonin stimulates [Ca2+]i elevation in ciliary ecto-dermal cells of echinoplutei through a serotonin receptor cell network in the blastocoel. Exp Biol 210:403–412

    Article  CAS  Google Scholar 

  • Khaner O, Wilt F (1991) Interactions of different vegetal cells with mesomeres during early stages of sea urchin development. Development 112:881–890

    CAS  Google Scholar 

  • Kiyomoto M, Zito F, Sciarrino S, Matranga V (2004) Commitment and response to inductive signals of primary mesenchyme cells of the sea urchin embryo. Dev Growth Diff 46:107–113

    Article  Google Scholar 

  • Kiyomoto M, Zito F, Costa C, Poma V, Sciarrino S, Matranga V (2007) Skeletogenesis by trans-fated secondary mesenchyme cells is dependent on extracellular matrix–ectoderm interactions in Paracentrotus lividus sea urchin embryos. Dev Growth Diff 49:731–741

    CAS  Google Scholar 

  • Kleber M, Sommer L (2004) Wnt signaling and the regulation of stem cell function. Curr Opin Cell Biol 16:681–687

    Article  CAS  Google Scholar 

  • Le Douarin NM, Dupin E (2003) Multipotentiality of the neural crest. Curr Opin Genet Dev 13:529–536

    Article  CAS  Google Scholar 

  • Lee HY, Kleber M, Hari L, Brault V, Suter U, Taketo MM, Kemler R, Sommer L (2004) Instruc-tive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells. Science 303:1020–1023

    Article  CAS  Google Scholar 

  • Leptin M (1991) Twist and snail as positive and negative regulators during Drosophila mesoderm development. Genes Dev 5:1568–1576

    Article  CAS  Google Scholar 

  • Livingston BT, Wilt FH (1989) Lithium evokes expression of vegetal-specific molecules in the animal blastomeres of sea urchin embryos. Proc Natl Acad Sci USA 86:3669–3673

    Article  CAS  Google Scholar 

  • Livingston BT, Killian CE, Wilt F, Cameron A, Landrum MJ, Ermolaeva O, Sapojnikov V, Maglott DR, Buchanan AM, Ettensohn CA (2006) A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Dev Biol 300:335–348

    Article  CAS  Google Scholar 

  • Malinda KM, Fisher GW, Ettensohn CA (1995) Four-dimensional microscopic analysis of the filopodial behaviour of primary mesenchyme cells during gastrulation in the sea urchin em-bryo. Dev Biol 172:552–566

    Article  CAS  Google Scholar 

  • Manzanares M, Locascio A, Nieto MA (2001) The increasing complexity of the Snail gene su-perfamily in metazoan evolution. Trends Genet 17:178–181

    Article  CAS  Google Scholar 

  • Materna SC, Davidson EH (2007) Logic of gene regulatory networks. Curr Opin Biotech 18:351–354

    Article  CAS  Google Scholar 

  • Matsuno T, Tsushima M (2001) Carotenoids in sea urchins. In: Lawrence JM (ed) Edible sea urchins: Biology and ecology. Elsevier Science, Amsterdam

    Google Scholar 

  • McClay DR, Logan CY (1996) Regulative capacity of the archenteron during gastrulation in the sea urchin. Development 122:607–616

    CAS  Google Scholar 

  • McClay DR, Peterson RE, Range RC, Winter-Vann AM, Ferkowicz MJ (2000) A micromere in-duction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo. Development 127:5113–5122

    CAS  Google Scholar 

  • McCoon PE, Blackstone E, Angerer RC, Angerer LM (1998) Sea Urchin FGFR muscle-specific expression: Posttranscriptional regulation in embryos and adults. Dev Biol 200:171–181

    Article  CAS  Google Scholar 

  • Meulemans D, Bronner-Fraser M (2004) Gene-regulatory interactions in neural crest evolution and development. Dev Cell 7:291–299

    Article  CAS  Google Scholar 

  • Miller J, Fraser SE, McClay D (1995) Dynamics of thin filopodia during sea urchin gastrulation. Development 121:2501–2511

    CAS  Google Scholar 

  • Miller BA, Emlet RB (1999) Development of newly metamorphosed juvenile sea urchins (Strongylocentrotus franciscanusand S. purpuratus): Morphology, the effects of temperature and larval food ration, and a method for determining age. J Exp Mar Biol Ecol 235:67–90

    Article  Google Scholar 

  • Minokawa T, Hamaguchi Y, Amemiya S (1997) Skeletogenic potential of induced secondary mesenchyme cells derived from the presumptive ectoderm in echinoid embryos. Dev Genes Evol 206:472–476

    Article  Google Scholar 

  • Minokawa T, Wikramanayake AH, Davidson EH (2005) cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network. Dev Biol 288:545–558

    Article  CAS  Google Scholar 

  • Molofsky AV, Pardal R, Morrison SJ (2004) Diverse mechanisms regulate stem cell self-renewal. Curr Opin Cell Biol 16:700–707

    Article  CAS  Google Scholar 

  • Monroy A, Oddo AM, Denicola M (1951) The carotenoid pigments during early development of the egg of the sea urchin Paracentrotus lividus. Exp Cell Res 2:700–702

    CAS  Google Scholar 

  • Morales AV, Nieto MA (2004) The Snail gene family during gastrulation. In: Stern CD (ed) Gastrulation: From cells to embryos. Cold Spring Harbor Lab Press, New York, pp 631–641

    Google Scholar 

  • Moreau JL, Marques F, Barakat A, Schatt P, Lozano JC, Peaucellier G, Picard A, Geneviere AM (1998) Cdk2 activity is dispensable for the onset of DNA replication during the first mitotic cycles of the sea urchin early embryo. Dev Biol 200:182–197

    Article  CAS  Google Scholar 

  • Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441:1068–1074

    Article  CAS  Google Scholar 

  • Nakajima Y, Kaneko H, Murray G, Burke R (2004) Divergent patterns of neural development in larval echinoderm and asteroids. Evol Dev 6:95–104

    Article  Google Scholar 

  • Niwa H (2007) How is pluripotency determined and maintained? Dev 134:635–646

    Article  CAS  Google Scholar 

  • Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376

    Article  CAS  Google Scholar 

  • Obaya AJ, Sedivy JM (2002) Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci 59:126–142

    Article  CAS  Google Scholar 

  • Ohlstein B, Kai T, Decotto E, Spradling A (2004) The stem cell niche: Theme and variations. Curr Opin Cell Biol 16:693–699

    Article  CAS  Google Scholar 

  • Okazaki K (1975) Spicule formation by isolated micromeres of the sea urchin embryo. Am Zool 15:567–581

    Google Scholar 

  • Okazaki K, Dan K (1954) The metamorphosis of partial larvae of Peronella japonicaMortensen, a sand dollar. Biol Bull 106:83–99

    Article  Google Scholar 

  • Pearse JS, Cameron RA (1991) Echinodermata: Echinoidea. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of Marine Invertebrates, vol 6. Boxwood Press, Pacific Grove, pp 514–662

    Google Scholar 

  • Pehrson JR, Cohen LH (1986) The fate of the small micromeres in sea urchin development. Dev Biol 113:522–526

    Article  CAS  Google Scholar 

  • Peterson RE, McClay DR (2003) Primary mesenchyme cell patterning during the early stages following ingression. Dev Biol 254:68–78

    Article  CAS  Google Scholar 

  • Raible DW (2006) Development of the neural crest: Achieving specificity in regulatory pathways. Curr Opin Cell Biol 18:698–703

    Article  CAS  Google Scholar 

  • Ransick A, Davidson EH (2006) cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification. Dev Biol 297:587–602

    Article  CAS  Google Scholar 

  • Ransick A, Rast JP, Minokawa T, Calestani C, Davidson EH (2002) New early zygotic regula-tors expressed in endomesoderm of sea urchin embryos discovered by differential array hy-bridization. Dev Biol 246:132–147

    Article  CAS  Google Scholar 

  • Röttinger E, Saudemont A, Duboc V, Besnardeau L, McClay D, Lepage T (2008) FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis of the skeleton and regulate gastrulation during sea urchin development. Development 135:352–365

    Article  CAS  Google Scholar 

  • Ruffins SW, Ettensohn CA (1993) A clonal analysis of secondary mesenchyme cell fates in the sea urchin embryo. Dev Biol 160:285–288

    Article  CAS  Google Scholar 

  • Ruffins SW, Ettensohn CA (1996) A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula. Development 122:253–263

    CAS  Google Scholar 

  • Ryberg E, Lundgren B (1979) Some aspects on pigment cell distribution and function in devel-oping echinopluteus of Psamechinus miliaris. Dev Growth Diff 21:129–140

    Article  Google Scholar 

  • Sea urchin genome sequencing consortium et al (2006) The genome of the sea urchin Strongy-locentrotus purpuratus. Science 314:941–952

    Article  Google Scholar 

  • Service M, Wardlaw AC (1984) Echinochrome-a as a bactericidal substance in the coelomic fluid of Echinus esculentus. Comp Biochem Physiol 79B:161–165

    CAS  Google Scholar 

  • Sherwood DR, McClay DR (1999) LvNotch signaling mediates secondary mesenchyme specifi-cation in the sea urchin embryo. Development 126:1703–1713

    CAS  Google Scholar 

  • Sherwood DR, McClay DR (2001) LvNotch signaling plays a dual role in regulating the position of the ectoderm-endoderm boundary in the sea urchin embryo. Development 128:2221–2232

    CAS  Google Scholar 

  • Shoguchi E, Tokuoka M, Kominami T (2002) In situ screening for genes expressed preferentially in secondary mesenchyme cells of sea urchin embryos. Dev Genes Evol 212:407–418

    Article  CAS  Google Scholar 

  • Silva JR (2000) The onset of phagocytosis and identity in the embryo of Lytechinus variegatus. Dev Comp Immunol 24:733–739

    Article  CAS  Google Scholar 

  • Smith AB (2004) Echinoderm roots. Nature 430:411–412

    Article  CAS  Google Scholar 

  • Smith LC, Rast JP, Brockton V, Terwilliger DP, Nair SV, Buckley KM, Majeske AJ (2006) The sea urchin immune system. Invert Surviv J 3:25–39

    Google Scholar 

  • Sommer L (2005) Checkpoints of melanocyte stem cell development. Sci STKE 298:pe42

    Google Scholar 

  • Stephens L, Hardin J, Keller R, Wilt F (1986) The effects of aphidicolin on morphogenesis and differentiation in the sea urchin embryo. Dev Biol 118:64–69

    Article  CAS  Google Scholar 

  • Sweet HC, Hodor PG, Ettensohn CA (1999) The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis. Development 126:5255–5265

    CAS  Google Scholar 

  • Sweet HC, Gehring M, Ettensohn CA (2002) LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties. Development 129:1945–1955

    CAS  Google Scholar 

  • Tamboline CR, Burke RD (1992) Secondary mesenchyme of the sea urchin embryo: Ontogeny of blastocoelar cells. J Exp Zool 262:51–60

    Article  CAS  Google Scholar 

  • Tanaka S, Dan K (1990) Study of the lineage and cell cycle of small micromeres in embryos of the sea urchin, Hemicentrotus pulcherrimus. Dev Growth Differ 32:145–156

    Article  Google Scholar 

  • Tokuoka M, Setoguchi C, Kominami T (2002) Specification and differentiation processes of secondary mesenchyme-derived cells in embryos of the sea urchin Hemicentrotus pulcherrimus. Dev Growth Diff 44:239–250

    Article  Google Scholar 

  • Vance KW, Goding CR (2004) The transcription network regulating melanocyte development and melanoma. Pigment Cell Res 17:318–325

    Article  CAS  Google Scholar 

  • Voronina E, Lopez M, Juliano CE, Gustafson E, Song JL, Extavour C, George S, Oliveri P, McClay D, Wessel G (2008) Vasa protein expression is restricted to the small micromeres of the sea urchin, but is inducible in other lineages early in development. Dev Biol 314:276–286

    Article  CAS  Google Scholar 

  • Walton KD, Croce JC, Glenn TD, Wu SY, McClay RD (2006) Genomics and expression profiles of the Hedgehog and Notch signaling pathways in sea urchin development. Dev Biol 300:153–164

    Article  CAS  Google Scholar 

  • Weston JA (1991) Sequential segregation and fate of developmentally restricted intermediate cell populations in the neural crest lineage. Curr Top Dev Biol 25:133–153

    Article  CAS  Google Scholar 

  • Wikramanayake AH, Peterson R, Chen J, Huang L, McClay DR, Klein WH (2004) Nuclear b-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages. Genesis 39:194–205

    Article  CAS  Google Scholar 

  • Wilt FH (1999) Matrix and mineral in the sea urchin larval skeleton. J Struct Biol 126:216–226

    Article  CAS  Google Scholar 

  • Wilt FH (2002) Biomineralization of the spicules of sea urchin embryos. Zool Sci 19:253–261

    Article  CAS  Google Scholar 

  • Wilt FH (2005) Developmental biology meets materials science: Morphogenesis of biomineral-ized structures. Dev Biol 280:15–25

    Article  CAS  Google Scholar 

  • Wilt FH, Killian CE, Livingston BT (2003) Development of calcareous skeletal elements in in-vertebrates. Diff 71:237–250

    Article  CAS  Google Scholar 

  • Wray GA (1996) Parallel evolution of nonfeeding larvae in echinoids. Syst Biol 45:308–322

    Google Scholar 

  • Wray GA, McClay DR (1988) The origin of spicule forming cells in a “primitive” sea urchin (Eucidaris tribuloides) which appears to lack primary mesenchyme cell. Development 103:305–315

    CAS  Google Scholar 

  • Wray GA, Raff RA (1989) Evolutionary modification of cell lineage in the direct-developing sea urchin Heliocidaris erythrogramma. Dev Biol 132:458–470

    Article  CAS  Google Scholar 

  • Wu J, Saint-Jeannet JP, Klein PS (2003) Wnt-frizzled signaling in neural crest formation. Trends Neurosc 26:40–45

    Article  CAS  Google Scholar 

  • Wu SY, McClay DR (2007) The Snail repressor is required for PMC ingression in the sea urchin embryo. Development 134:1061–1070

    Article  CAS  Google Scholar 

  • Wu SH, Yang YP, McClay DR (2008) Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo. Dev Biol 319:406–415

    Article  CAS  Google Scholar 

  • Yaguchi S, Kanoh K, Amemiya S, Katow H (2000) Initial analysis of immunocytochemical sur-face properties, location and formation of the serotonergic apical organ in sea urchin embryos. Dev Growth Diff 42:479–488

    Article  CAS  Google Scholar 

  • Yajima M (2007a) Evolutionary modification of mesenchyme cells in sand dollars in the transition from indirect to direct development. Evol Dev 9:258–267

    Google Scholar 

  • Yajima M (2007b) A switch in the cellular basis of skeletogenesis in late-stage sea urchin larvae. Dev Biol 307:272–281

    Article  CAS  Google Scholar 

  • Yajima M, Kiyomoto M (2006) Study of larval and adult skeletogenic cells in the developing sea urchin larvae. Biol Bull 211:183–192

    Article  Google Scholar 

  • Yokota Y, Matranga V, Smolenicka Z (eds) (2002) Sea urchin: From basic biology to aquaculture. Balkema, The Netherlands

    Google Scholar 

  • Young RS (1958) Development of pigment in the larvae of the sea urchin, Lytechinus variegatus. Biol Bull 114:394–403

    Article  CAS  Google Scholar 

  • Zandonella C (2005) Stem-cell therapies: The first wave. Nature 435:877–878

    CAS  Google Scholar 

  • Zhan M (2008) Genomic studies to explore self-renewal and differentiation properties of embry-onic stem cells. Frontiers Biosc 13:276–283

    Article  CAS  Google Scholar 

  • Zhou Q, Chipperfield H, Melton DA, Wong WH (2007) A gene regulatory network in mouse embryonic stem cells. Proc Natl Acad Sci 104:16438–16443

    Article  CAS  Google Scholar 

  • Zito F, Costa C, Sciarrino S, Poma V, Russo R, Angerer LM, Matranga V (2003) Expression of univin, a TGF-β growth factor, requires ectoderm-ECM interaction and promotes skeletal growth in the sea urchin embryo. Dev Biol 264:217–227

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Maria Byrne and Hideki Katow for their critical reading of a draft of this manuscript. We warmly thank all the other members of the group for their help and support. F.Z. wishes to express her gratitude to a few colleagues of IBIM for their continuous encouragement, helpfulness and friendliness. Authors are grateful for the partial financial support of the Marine Genomics Europe Network of the Excellence and MoMe ASI project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Zito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zito, F., Matranga, V. (2009). Secondary Mesenchyme Cells as Potential Stem Cells of the Sea Urchin Embryo. In: Rinkevich, B., Matranga, V. (eds) Stem Cells in Marine Organisms. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2767-2_8

Download citation

Publish with us

Policies and ethics