Skip to main content

Efficient and Accurate Electron Propagator Methods and Algorithms

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry

Abstract

Recent developments in electron propagator methods that employ the quasiparticle approximation can facilitate calculations on molecules of unprecedented size. Reductions of arithmetic and storage requirements are considered. New and reliable approximations that offer a better compromise of accuracy and feasibility are proposed. Transition operator orbitals, in combination with the second-order self-energy, provide reliable predictions for valence and core electron binding energies with algorithms that are comparable in efficiency to their counterparts that employ ordinary Hartree–Fock orbitals. Quasiparticle virtual orbitals enable accurate evaluation of third-order self-energy contributions, while significantly reducing storage and arithmetic requirements. Algorithms that employ the resolution-of-the-identity approach to the evaluation of electron repulsion integrals require less memory but retain the accuracy of ordinary calculations. Numerical tests confirm the promise of these new approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Linderberg, Y. Öhrn, Propagators in Quantum Chemistry, 2nd edn. (Wiley, Hoboken, 2004)

    Book  Google Scholar 

  2. B.T. Pickup, O. Goscinski, Direct calculation of ionization energies. Mol. Phys. 26, 1013–1035 (1973)

    Article  CAS  Google Scholar 

  3. Y. Öhrn, G. Born, Molecular electron propagator theory and calculations. Adv. Quantum Chem. 13, 1–88 (1981)

    Article  Google Scholar 

  4. J.V. Ortiz, Toward an exact one-electron picture of chemical bonding. Adv. Quantum Chem. 35, 33–52 (1999)

    Article  CAS  Google Scholar 

  5. L.S. Cederbaum, W. Domcke, Theoretical aspects of ionization potentials of photoelectron spectroscopy: A many-body approach, Adv. Chem. Phys. 36, 205–344 (1977)

    Article  CAS  Google Scholar 

  6. W. von Niessen et al., Computational methods for the one-particle Green’s function. Comp. Phys. Rep. 1, 57–125 (1984)

    Article  Google Scholar 

  7. J. Simons, in Theoretical Studies of Negative Molecular Ions, ed. by H. Eyring and D. Henderson Theoretical Chemistry: Advances and Perspectives, Vol. 3 (Academic, New York, 1978)

    Google Scholar 

  8. M.F. Herman et al., Theoretical studies of the equations of motion – Green’s function methods and configuration interaction methods: Analysis of methods and applications. Adv. Chem. Phys. 48, 1–69 (1981)

    Article  CAS  Google Scholar 

  9. J.V. Ortiz, Partial third order quasiparticle theory: Comparisons for closed-shell ionization energies and an application to the borazine photoelectron spectrum. J. Chem. Phys. 104, 7599–7605 (1996)

    Article  CAS  Google Scholar 

  10. A.M. Ferreira et al., in Application and Testing of Diagonal, Partial Third-Order Electron Propagator Approximations, ed. by J. Cioslowski Understanding Chemical Reactivity, Vol. 22, Quantum–Mechanical Prediction of Thermochemical Data (Kluwer, Dordrecht, 2001), pp. 131–160

    Google Scholar 

  11. J.V. Ortiz, in The electron propagator picture of molecular electronic structure, ed. by J. Leszczynski Computational Chemistry: Reviews of Current Trends, Vol. 2 (World Scientific, Singapore, 1997), pp. 1–61

    Google Scholar 

  12. V.V. Zakjevskii et al., Base and phosphate electron detachment energies of deoxyribonucleotide anions. J. Am. Chem. Soc. 128, 13350–13351 (2006)

    Article  CAS  Google Scholar 

  13. V.V. Zakjevskii et al., Electron propagator studies of vertical electron detachment energies and isomerism in purinic deoxyribonucleotides. Int. J. Quantum Chem. 107, 2266–2273 (2007)

    Article  CAS  Google Scholar 

  14. O. Dolgounitcheva et al., Electron propagator calculations show that alkyl substituents alter porphyrin ionization energies. J. Am. Chem. Soc. 127, 8240–8241 (2005)

    Article  CAS  Google Scholar 

  15. O. Dolgounitcheva et al., Ab initio electron propagator calculations on the ionization energies of free base porphyrin, magnesium porphyrin and zinc porphyrin. J. Phys. Chem. 109, 11596–11601 (2005)

    CAS  Google Scholar 

  16. J.V. Ortiz et al., in One-Electron Pictures of Electronic Structure: Propagator Calculations on Photoelectron Spectra of Aromatic Molecules, ed. by J.-L. Calais, E. Kryachko Conceptual Perspectives in Quantum Chemistry, Vol. 3 (Kluwer, Dordrecht, 1997), pp. 465–517

    Google Scholar 

  17. C.C.J. Roothaan, Self-consistent field theory for open-shells of electronic systems. Rev. Mod. Phys. 32, 179–185 (1960)

    Article  Google Scholar 

  18. G.G. Hall, The molecular orbital theory of chemical valency. VIII-A method of calculating ionization potentials. Proc. Roy. Soc. Ser. A 205, 541–552 (1951)

    CAS  Google Scholar 

  19. D.R. Hartree, The Calculation of Atomic Structures. (Wiley, London, 1957)

    Google Scholar 

  20. V.A. Fock, Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z. Phys. 61, 126–148 (1930)

    Article  Google Scholar 

  21. V.G. Zakrzewski, J.V. Ortiz, Semidirect algorithms in electron propagator calculations. Int. J. Quantum Chem. Symp. 28, 23–27 (1994)

    Article  CAS  Google Scholar 

  22. V.G. Zakrzewski, J.V. Ortiz, Semidirect algorithms for third order electron propagator calculations. Int. J. Quantum Chem. 53, 583–590 (1995)

    Article  CAS  Google Scholar 

  23. J.C. Slater, J.H. Wood, Statistical exchange and the total energy of a crystal. Int. J. Quantum Chem. (Suppl.) 4, 3–34 (1971)

    Google Scholar 

  24. J.C. Slater, Statistical exchange-correlation in the self-consistent field. Adv. Quantum Chem. 6, 1–91 (1972)

    Article  CAS  Google Scholar 

  25. J.F. Janak, Proof that \(\partial E/\partial {n}_{i} = {\varepsilon }_{i}\) in density-functional theory. Phys. Rev. B 18, 7165–7168 (1978)

    Article  CAS  Google Scholar 

  26. R. Flores-Moreno et al., Assessment of transition operator reference states in electron propagator calculations. J. Chem. Phys. 127, 134106/1–8 (2007)

    Google Scholar 

  27. R. Flores-Moreno, J.V. Ortiz, Quasiparticle virtual orbitals in electron propagator calculations, J. Chem. Phys. 128, 164105/1–6 (2008)

    Google Scholar 

  28. R. Flores-Moreno, J.V. Ortiz, Resolution of the identity for electron propagator calculations. unpublished results.

    Google Scholar 

  29. J.V. Ortiz, Energy gradients and effective density differences in electron propagator theory. J. Chem. Phys. 112, 56–68 (2000)

    Article  CAS  Google Scholar 

  30. P.-O. Löwdin, Studies in perturbation theory. IX. Connection between various approaches in the recent development-evaluation of upper bounds to energy eigenvalues in Schrödinger’s perturbation theory. J. Math. Phys. 6, 1341–1353 (1965)

    Google Scholar 

  31. C. Møller, M.S. Plesset, Note on an approximation treatment for many-electron systems. Phys. Rev. 46, 618–622 (1934)

    Article  Google Scholar 

  32. P.-O. Löwdin, Studies in perturbation theory. X. Lower bounds to energy eigenvalues in perturbation-theory ground state. Phys. Rev. 139, A357–A372 (1965)

    Google Scholar 

  33. J.V. Ortiz, Improved electron propagator methods: An investigation of C4, C4  − , and C4  + . J. Chem. Phys. 99, 6716–6726 (1993)

    Article  CAS  Google Scholar 

  34. J. Baker, B.T. Pickup, A molecular method for ionization potentials. Chem. Phys. Lett. 76, 537–541 (1980)

    Article  CAS  Google Scholar 

  35. S.F. Abdulnur et al., Atomic central-field models for open shells with application to transition metals. Phys. Rev. A 6, 889–898 (1972)

    Article  CAS  Google Scholar 

  36. P. Bagus, Self-consistent-field wave functions for hole states of some Ne-like and Ar-like ions. Phys. Rev. 139, A619–634 (1965)

    Article  Google Scholar 

  37. G.D. Purvis, Y. Öhrn, The transition state, the electron propagator, and the equation of motion method. J. Chem. Phys. 65, 917–922 (1976)

    Article  CAS  Google Scholar 

  38. G. Born et al., Elementary finite order perturbation theory for vertical ionization energies. J. Chem. Phys. 68, 74–85 (1978)

    Article  CAS  Google Scholar 

  39. G. Born et al., On the calculation of electron binding energies. J. Chem. Phys. 69, 1162–1167 (1978)

    Article  Google Scholar 

  40. J.V. Ortiz et al., Electron propagator calculations with a transition operator reference state. Chem. Phys. Lett. 103, 29–34 (1983)

    Article  CAS  Google Scholar 

  41. M.J. Frisch et al., Gaussian 2003 (Gaussian, Inc., Pittsburgh, PA, 2003)

    Google Scholar 

  42. J. Cioslowski, J.V. Ortiz, One-electron density matrices and energy gradients in second-order electron propagator theory. J. Chem. Phys. 96, 8379–8389 (1992)

    Article  CAS  Google Scholar 

  43. A. Köster, Hermite gaussian auxiliary functions for the variational fitting of the Coulomb potential in density functional methods. J. Chem. Phys. 118, 9943–9951 (2003)

    Article  Google Scholar 

  44. N.H.F. Beebe, J. Linderberg, Simplifications in the generation and transformation of two-electron integrals in molecular calculations. Int. J. Quantum Chem. 12, 683–705 (1977)

    Article  CAS  Google Scholar 

  45. B.I. Dunlap et al., On some approximations in applications of Xα theory. J. Chem. Phys. 71, 3396–3402 (1979)

    Article  CAS  Google Scholar 

  46. J.W. Mintmire, B.I. Dunlap, Fitting the Coulomb potential variationally in linear-combination-of-atomic-orbitals density-functional calculations. Phys. Rev. A 25, 88–95 (1982)

    Article  CAS  Google Scholar 

  47. O. Vahtras et al., Integral approximations for LCAO-SCF calculations. Chem. Phys. Lett. 213, 514–518 (1993)

    Article  CAS  Google Scholar 

  48. E.J. Baerends et al., Self-consistent molecular Hartree–Fock–Slater calculations I. The computational procedure. Chem. Phys. 2, 41–51 (1973)

    CAS  Google Scholar 

  49. C.-K. Skylaris et al., On the resolution of identity Coulomb energy approximation in density functional theory. J. Mol. Struct.: Theochem. 501, 229–239 (2000)

    Google Scholar 

  50. A.P. Rendell, T.J. Lee, Coupled-cluster theory employing approximate integrals: An approach to avoid the input/output and storage bottlenecks. J. Chem. Phys. 101, 400–408 (1994)

    Article  CAS  Google Scholar 

  51. S. Hamel et al., Assessment of the quality of orbital energies in resolution-of-the-identity Hartree–Fock calculations using deMon auxiliary basis sets. J. Chem. Phys. 114, 7342–7350 (2001)

    Article  CAS  Google Scholar 

  52. W. Kohn, L.J. Sham, Quantum density oscillations in an inhomogeneous electron gas. Phys. Rev. 137, A1697–A1705 (1965)

    Article  Google Scholar 

  53. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Google Scholar 

  54. Y. Shigeta et al., Electron propagator calculations with Kohn–Sham reference states. Int. J. Quantum. Chem. 85, 411–420 (2001)

    Article  CAS  Google Scholar 

  55. A.M. Köster et al., deMon developers, (2006), http://www.demon-software.com

  56. L. Hedin, New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139, A796–A823 (1965)

    Article  Google Scholar 

  57. Ionization potentials for atoms were taken from NIST tables (2007), http://physics.nist.gov/PhysRefData/IonEnergy/tblNew.html

  58. W.L. Jolly et al., Core-electron binding energies for gaseous atoms and molecules. At. Data Nucl. Data Tables 31, 433–493 (1984)

    Article  CAS  Google Scholar 

  59. T.H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

    CAS  Google Scholar 

  60. R.C. Morrison, G. Liu, Extended Koopmans’ theorem: Approximate ionization energies from MSCF wave functions. J. Comput. Chem. 13, 1004–1010 (1992)

    Article  CAS  Google Scholar 

  61. P. Calaminici et al., A density functional study of structures and vibrations of Ta3O and Ta3O − . Comput. Lett. 1, 164–171 (2005)

    Article  CAS  Google Scholar 

  62. P. Calaminici et al., Density functional theory optimized basis sets for gradient corrected functionals: 3d transition metal systems. J. Chem. Phys. 126, 044108/1–10 (2007)

    Google Scholar 

Download references

Acknowledgements

The National Science Foundation (USA) provided support for this research through grant CHE-0451810 to Auburn University. R.F.-M. would like to thank CONACyT (México) for postdoctoral funding at the University of Guanajuato, and the Mexican National System of Researchers (Sistema Nacional de Investigadores) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Flores-Moreno, R., Ortiz, J.V. (2009). Efficient and Accurate Electron Propagator Methods and Algorithms. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2687-3_1

Download citation

Publish with us

Policies and ethics