Skip to main content

Mass Extinctions, Anoxic Events and Ocean Acidification

  • Reference work entry
Encyclopedia of Modern Coral Reefs

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Introduction

The five great mass extinction events that have greatly influenced paths of evolution of life on Earth have attracted a wide range of speculation about original causes and ultimate effects. In this context, reefs are among the most widely studied of marine communities, partly because carbonate platforms are so enduring, but also because the fossil record of corals is relatively well known in terms of abundance and distribution. The marine tropics in general and reef taxa have been particularly targeted in mass extinctions. In each case, they have taken many millions of years to recover, intervals of time known as “reef gaps.” Many authors have speculated on the causes of mass extinctions and reef gaps, the outcome being a wide array of hypotheses involving climatic upheavals of both terrestrial and extraterrestrial origin. This article reviews these proposals and examines them in the light of the biology of extant corals and their Pleistocene history.

Mass extinctions,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Alvarez, L., Alvarez, W., Asaro, F., and Michel, H. V., 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction: experimental results and theoretical interpretation. Science, 208, 1095–1108.

    Article  Google Scholar 

  • Barron, E. J., 1983. A warm, equable Cretaceous: the nature of the problem. Earth Science Reviews, 19, 305–338.

    Article  Google Scholar 

  • Barron, E. J., and Washington, W. M., 1985. Warm cretaceous climates: high atmospheric carbon dioxide as a plausible mechanism. In Sundquist, E. T., and Broecker, W. S. (eds.), The Carbon Cycle and Atmospheric Carbon Dioxide: Natural Variations, Archaean to Present: American Geophysical Union Monograph 32, pp. 546–553.

    Google Scholar 

  • Beauvais, L., 1984. Evolution and diversification of Jurassic Scleractinia. Palaeontographica Americana, 54, 219–224.

    Google Scholar 

  • Berner, R. A., 1994. GEOCARB II: a revised Model of Atmospheric carbon dioxide over Phanerozoic time. American Journal of Science, 294, 56–91.

    Article  Google Scholar 

  • Berner, R. A., 2006. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. American Journal of Science, 306, 295–302.

    Article  Google Scholar 

  • Buddemeier, R. W., Kleypas, J. A., and Aronson, R. B., 2004. Coral Reefs and Global Climate Change: Potential Contributions of Climate Change to Stresses on Coral Reef Ecosystems. Arlington, VA: Pew Center on Global Climate Change.

    Google Scholar 

  • Copper, P., 1994. Ancient reef ecosystem expansion and collapse. Coral Reefs, 13, 3–11.

    Article  Google Scholar 

  • Copper, P., 2001. Evolution, radiations, and extinctions in Proterozoic to Mid-Paleozoic reefs. In Stanley, G. D. Jr. (ed.), The History and Sedimentology of Ancient Reef Systems. New York: Academic/Plenum Publishers, pp. 89–119.

    Chapter  Google Scholar 

  • Copper, P., 2002. Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages. In Kiessling, W., Flügel, E., and Galonka, J. (eds.), Phanerozoic Reef Patterns. SEPM Special Publication, 72, pp. 181–238.

    Google Scholar 

  • Erwin, D. H., 2006. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Fine, M., and Tchernov, D., 2007. Scleractinian coral species survive and recover from decalcification. Science, 315, 1811.

    Article  Google Scholar 

  • Flügel, E., and Senowbari-Daryan, B., 2001. Triassic reefs of the Tethys. In Stanley, G. D. Jr. (ed.), The History and Sedimentology of Ancient Reef Systems. New York: Academic/Plenum Publishers, pp. 217–249.

    Chapter  Google Scholar 

  • Gale, A., 2000. The Cretaceous World. In Culver, S. J., and Rawson, P. F. (eds.), Biotic Response to Global Change: The Last 145 Million Years. Cambridge: Cambridge University Press, pp. 4–19.

    Chapter  Google Scholar 

  • Glen, W., 1990. What killed the dinosaurs? American Scientist, 78, 354–370.

    Google Scholar 

  • Grice, K., et al., 2005. Photoc zone euxinia during the Permian-Triassic superanoxic event. Science, 307, 706–709.

    Article  Google Scholar 

  • Guinotte, J. M., Buddemeier, R. W., and Kleypas, J. A., 2003. Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. Coral Reefs 22, 551–558.

    Article  Google Scholar 

  • Hallum, A., and Wignall, P. B., 1997. Mass Extinctions and Their Aftermath. New York: Oxford University Press.

    Google Scholar 

  • Hautmann, M., 2004. Effect of End-Triassic carbon dioxide maximum on carbonate sedimentation and marine mass extinction. Facies, 50, 257–261.

    Article  Google Scholar 

  • Hautmann, M., Benton, M. J., and Tomašových, A., 2008. Catastrophic ocean acidification at the Triassic-Jurassic boundary. Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen, 249, 119–127.

    Article  Google Scholar 

  • Jablonski, D., 1986. Mass extinctions: new answers, new questions. In Kaufman, L., Mallory, K. (eds.), The Last Extinction. Cambridge: MIT Press, pp. 43–61.

    Google Scholar 

  • Johnson, C. C., Sanders, D., Kauffman, E. G., and Hay, W. W., 2002. Patterns and processes influencing Upper Cretaceous reefs. In Kiessling, W., Flügel, E., Galonka, J. (eds.), Phanerozoic Reef Patterns. SEPM Special Publication, 72, pp. 549–585.

    Google Scholar 

  • Kiessling, W., 2001. Phanerozoic reef trends based on the Paleoreef database. In Stanley, G. D. Jr. (ed.), The History and Sedimentology of Ancient Reef Systems. New York: Academic/Plenum Publishers, pp. 41–88.

    Chapter  Google Scholar 

  • Kiessling, W., Aberhan, M., and Villier, L., 2008. Phanerozoic trends in skeletal morphology driven by mass extinctions. Nature Geoscience, 1, 527–538.

    Article  Google Scholar 

  • Kiessling, W., 2009. Geologic and biologic controls on the evolution of reefs. Annual Review of Ecology, Evolution, and Systematics, 40, 173–192.

    Article  Google Scholar 

  • Kiessling, W., and Baron-Szabo, R. C., 2004. Extinction and recovery patterns of scleractinian corals at the Cretaceous-Tertiary boundary. Palaeo, 214, 195–223.

    Google Scholar 

  • Kleypas, J. A., and Langdon, C., 2006. Coral reefs and changing seawater carbonate chemistry. In Phinney, J. T., Hoegh-Guldberg, O., Kleypas, J. A., Skirving, W., Strong, A. (eds.), Coral Reefs and Climate Change: Science and Management. American Geophysical Union Coastal and Estuarine Studies, Vol. 61, pp. 73–110.

    Google Scholar 

  • Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W., 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters, 256, 295–313.

    Article  Google Scholar 

  • Lambeck, K., Chappell, J., 2001. Sea level change through the last glacial cycle. Science, 292, 679–686.

    Article  Google Scholar 

  • McLaren, D. J., and Goodfellow, W. D., 1990. Geological and biological consequences of giant impacts. Annual Review of Earth and Planetary Sciences, 18, 123–171.

    Article  Google Scholar 

  • Racki, G., 2005. Towards understanding Late Devonian global events: few answers, many questions. In Over, D. J., Morrow, J. R., and Wignall, P. B. (eds.), Understanding Late Devonian and Permian-Triassic Biotic and Climatic Events. pp. 5–36.

    Google Scholar 

  • Raup, D. M., and Sepkoski, J. J. Jr., 1986. Periodic extinction of families and genera. Science, 231, 833–836.

    Article  Google Scholar 

  • Rosen, B. R., 2000. Algal symbiosis and the collapse and recovery of reef communities: Lazarus corals across the Cretaceous/Tertiary boundary. In Culver S. J., and Rawson, P. F. (eds.), Biotic Response to Global Change: The Last 145 Million Years. Cambridge: Cambridge University Press, pp. 164–180.

    Chapter  Google Scholar 

  • Rosen, B. R., and Turnšek, D., 1989. Extinction patterns and biogeography of scleractinian corals across the Cretaceous/Tertiary boundary. Memoirs of the Association of Australasian Palaeontologists, 8, 355–370.

    Google Scholar 

  • Rothschild, L. J., and Lister, A. M. (eds.), 2003. Evolution on Planet Earth: The Impact of the Physical Environment. London: Academic Press.

    Google Scholar 

  • Ryskin, G., 2003. Methane-driven oceanic eruptions and mass extinctions. Geology, 31, 741–744.

    Article  Google Scholar 

  • Sepkowski, J. J. Jr., 1995. Patterns of Phanerozoic extinction: a perspective from global databases. In Walliser, O. H. (ed.), Global Events and Event Stratigraphy. Berlin: Springer-Verlag, pp. 35–51.

    Google Scholar 

  • Sepkowski, J. J. Jr., 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology, 363, 1–563.

    Google Scholar 

  • Siddall, M., Siddall, E. J., Rohling, A., Almogi-Labin, C., Hemleben, D., Meischner, I., Schmelzer, I., and Smeed, D. A., 2003. Sea-level fluctuations during the last glacial cycle. Nature, 423, 853–858.

    Article  Google Scholar 

  • Stanley, G. D. Jr., 1988. The history of early Mesozoic reef communities: a three-step process. Palaios, 3, 170–183.

    Article  Google Scholar 

  • Stanley, G. D. Jr., 2001. Introduction to reef ecosystems and their evolution. In Stanley, G. D. Jr. (ed.), The History and Sedimentology of Ancient Reef Systems. New York: Academic/Plenum Publishers, pp. 1–39.

    Chapter  Google Scholar 

  • Stolarski, J., Meibom, A., Przenioslo, R., and Mazur, M., 2007. A Cretaceous scleractinian coral with a calcitic skeleton. Science, 318, 92–94.

    Article  Google Scholar 

  • Tajika, E., 1999. Carbon cycle and climate change during the Cretaceous inferred from a biogeochemical carbon cycle model. The Island Arc, 8, 293–303.

    Article  Google Scholar 

  • Toon, O. B., Zahnle, K., Morrison, D., Turco, R. P., and Covey, C., 1997. Environmental perturbations caused by the impacts of asteroids and comets. Reviews of Geophysics, 35, 41–78.

    Article  Google Scholar 

  • Turley, C. M., Roberts, J. M., and Guinotte, J. M., 2007. Corals in deep-water: will the unseen hand of ocean acidification destroy cold-water ecosystems? Coral Reefs, 26, 445–448.

    Article  Google Scholar 

  • Veron, J. E. N., 1995. Corals in Space and Time: The Biogeography and Evolution of the Scleractinia. Sydney: University of New South Wales Press.

    Google Scholar 

  • Veron, J. E. N., 2008a. A Reef in Time: The Great Barrier Reef from Beginning to End. Cambridge, Mass: Harvard University Press.

    Google Scholar 

  • Veron, J. E. N., 2008b. Mass extinctions and ocean acidification: biological constraints on geological dilemmas. Coral Reefs, 27, 459–472.

    Article  Google Scholar 

  • Veron, J. E. N., and Kelly, R., 1988. Species stability in hermatypic corals of Papua New Guinea and the Indo-Pacific. Memoirs of the Association of Australasian Palaeontologists, 6, 1–69.

    Google Scholar 

  • Ward, P., 2008. Mass extinctions: the microbes strike back. New Scientist, 2642, 40–43.

    Google Scholar 

  • Webby, B. D., 1992. Global biogeography of Ordovician corals and stromatoporoids. In Webby, B., and Laurie, J. R. (eds.), Global Perspectives on Ordovician Geology, Vol. 2, Rotterdam: Balkema, pp. 261–276.

    Google Scholar 

  • Wood, R., 1999. Reef Evolution. Oxford: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Veron, J.E.N. (2011). Mass Extinctions, Anoxic Events and Ocean Acidification. In: Hopley, D. (eds) Encyclopedia of Modern Coral Reefs. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2639-2_37

Download citation

Publish with us

Policies and ethics