Skip to main content

Subdivision and Separation of Contact Spots

  • Chapter
  • First Online:
Adhesion of Cells, Viruses and Nanoparticles

Abstract

In biological adhesion systems, a wide range of cell contact geometries has been found.1–3 Where cells such as pollen or fungal spores need to be dispersed, the surfaces tend to be covered by spikes which prevent intimate extended contact between the particles, allowing the van der Waals force to be reduced to a low value. When adhesion needs to be maximised, for example where flies cling to the ceiling or lizards run up walls, the surfaces tend to split into close-packed hairy fibres or setai ending in flattened spatula tips.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerber, P.J., Lehmann, C., Gehr, P., Schurch, S., Wetting and Spreading of a Surfactant Film on Solid Particles: Influence of Sharp Edges and Surface Irregularities, Langmuir 22 (2006) 5273–81.

    Article  CAS  Google Scholar 

  2. Arzt, E., Gorb, S., Spolenak, R., From micro to nano contacts in biological attachment devices, PNAS 100 (2003) 10603–10606; Keane, P., Reid, I., Jarvis. S.P., Adhesion measurements on the nanoscale attachment structures of a range of spider species, Proc Adhesion Society, 33 Annual Meeting, Daytona Beach Fl. Feb 21 2010.

    Google Scholar 

  3. Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., Fearing, R., Full, R.J., Adhesive force of a single Gecko foot hair, Nature 405 (2000) 681–85.

    Article  CAS  Google Scholar 

  4. Breidbach, O., Mikrokosmos 69 (1980), 200–201.

    Google Scholar 

  5. Schliemann, H., Funkt. Biol. Med. 2 (1983), 169–177.

    Google Scholar 

  6. Liang, Y. C. A., Peattie, A. M., Hansen, W. R., Sponberg, S., Kenny, T. W., Fearing, R., Israelachvili, J. N. & Full, R. J., Proc. Natl. Acad. Sci. USA 99 (2002) 12252–12256. pmid:12198184

    Article  Google Scholar 

  7. Arzt, E., Enders, S. & Gorb, S., Z. Metallkde. 93 (2002) 345–353.

    CAS  Google Scholar 

  8. Kendall, K., Sticky solids, Contemporary Physics 21 (1980) 277–297

    Article  CAS  Google Scholar 

  9. Kendall, K., Molecular adhesion and its applications, Kluwer, New York 2001.

    Google Scholar 

  10. Autumn, K., Peattie, A.M., Mechanisms of adhesion in geckoes, Integrative comparative Biol 42 (2002) 1081–90.

    Article  Google Scholar 

  11. Autumn, K., Dittmore, A., Santos, D., Spenko, M., Cutkosky, M., Frictional adhesion: a new angle on gecko attachment, J. Exp. Biol., 209 (2006) 3569–3579.

    Article  CAS  Google Scholar 

  12. Irschick, D. J., C. C. Austin, K. Petren, R. Fisher, J. B. Losos, and O. Ellers. A comparative analysis of clinging ability among pad-bearing lizards. Biol. J. Linn. Soc, 59 (1996) 21–35

    Article  Google Scholar 

  13. Dellit, W.-D. Zur anatomie und physiologie der Geckozehe., Jena. Z. Naturw, 68 (1934) 613–656

    Google Scholar 

  14. Ruibal, R., and V. Ernst., The structure of the digital setae of lizards. J. Morph, 117 (1965) 271–294

    Article  CAS  Google Scholar 

  15. Kendall, K., Thin film peeling: the elastic term, J Phys D Appl Phys 8 (1975) 1449–52.

    Article  Google Scholar 

  16. Kendall, K., Interfacial dislocations spontaneously created by peeling, J Phys D Appl Phys 11 (1978) 1519–27.

    Article  Google Scholar 

  17. Kendall, K., Shrinkage and peel strength of adhesive joints, J Phys D: Appl Phys 6 (1973) 1782–7.

    Article  Google Scholar 

  18. Gurney, C. and Hunt, J., Quasistatic crack propagation, Proc R Soc Lond A299 (1967) 508–524.

    Google Scholar 

  19. Williams, J.G., A review of the determination of energy release rates for strips in tension and bending, Strain Anal Engng Design 28 (1993) 247–256.

    Article  Google Scholar 

  20. Drory, M.D., and Hutchinson, J.W., Measurement of the adhesion of a brittle film on a ductile substrate by indentation, Proc R Soc Lond A452 (1996) 2319–2341.

    Google Scholar 

  21. Kendall, K., Preparation and properties of rubber dislocations, Nature, 261 (1976) 35–6.

    Article  CAS  Google Scholar 

  22. Schallamach, A., How does rubber slide? Wear 17 (1971) 301–12.

    Article  Google Scholar 

  23. Kendall, K., Interfacial dislocations spontaneously created by peeling, J Phys D: Appl Phys 11 (1978) 1519–27.

    Article  Google Scholar 

  24. Kendall, K., Strengthening of adhesive joints by dislocations, Phil Mag 36 (1977) 507–15.

    Article  Google Scholar 

  25. Kendall, K., Control of cracks by interfaces in composites, Proc R Soc Lond A341 (1975) 409–428

    Google Scholar 

  26. Kendall, K., Transition between cohesive and interfacial failure in a laminate, Proc R Soc Lond A344 (1975) 287–302.

    Google Scholar 

  27. Cook, J., Gordon, J.E., A Mechanism for the Control of Crack Propagation in All- Brittle Systems, Proc. Roy. Soc., vol. A282 (1964), p. 508–520.

    Google Scholar 

  28. Chung, J.Y., Chaudhury, M.K., Roles of discontinuities in bio-inspired adhesive pads, J Roy Soc Interface 22 (2005) 55–61.

    Article  Google Scholar 

  29. Lee, J., Majidi, C., Schubert, B., and Fearing, R., Sliding induced adhesion of stiff polymer microfiber arrays: 1. Macroscale behaviour, Journal of the Royal Society, Interface (10.1098/rsif.2007.1308)

    Google Scholar 

  30. Schubert, B., Lee, J., Majidi, C., and Fearing, R., Sliding induced adhesion of stiff polymer microfiber arrays: 2. Microscale behaviour, Journal of the Royal Society, Interface (10.1098/rsif.2007.1309)

    Google Scholar 

  31. Qu, L., Dai, L., Stone, M., Xia, Z., Wang, Z.L., Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off, Science 322 (2008) 238–42

    Article  CAS  Google Scholar 

  32. Chen, B., Wu, P.D., Gao, H., Hierarchical modelling of attachment and detachment mechanisms of gecko toe adhesion, Proc R Soc A464 (2008) 1639–1652

    Google Scholar 

  33. Glassmaker, N.J., Jagota, A., Hui, C-Y., Noderer, W.L., Chaudhury, M.K., Biologically inspired crack trapping for enhanced adhesion, PNAS 104 (2007) 10786–91.

    Article  CAS  Google Scholar 

  34. Chen, B., Wu, P., Gao, H., Pre-tension generates strongly reversible adhesion of a spatula pad on substrate, J R Soc Interface 6 (2009) 529–537.

    Google Scholar 

  35. Oliver, A.E., Ngassam, V., Dang, P., Sanii, B., Wu, H., Yee, C.K., Parikh, A.N., Cell attachment behaviour on solid and fluid substrates exhibiting spatial patterns of physical properties, Langmuir (2009) 10.1021.

    Google Scholar 

  36. Dulcey, C. S., Georger, J. H., Krauthamer, V., Stenger, D. A., Fare, T. L. and Calvert, J. M. Science252 (1991) 551–554

    Article  CAS  Google Scholar 

  37. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE., Geometric control of cell life and death. Science 276 (1997) 1425–28.

    Article  CAS  Google Scholar 

  38. Kendall, K., The stiffness of surfaces in static and sliding contact, PhD thesis, Cambridge University 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Kendall .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kendall, K., Kendall, M., Rehfeldt, F. (2010). Subdivision and Separation of Contact Spots. In: Adhesion of Cells, Viruses and Nanoparticles. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2585-2_6

Download citation

Publish with us

Policies and ethics