Skip to main content

Biophysical Approaches To Study Dna Base Flipping

  • Conference paper
Biophysics and the Challenges of Emerging Threats

The most dramatic yet localized enzyme-induced conformational deformation of the helical structure of DNA is base flipping, in which a nucleobase is unpaired, removed from the stack and further rotated out to assume a fully extrahelical position. Since its first demonstration in crystal structures of cytosine methyltransferase-DNA complexes numerous studies revealed that base flipping is a fundamental mechanism in DNA modification and repair, mediates sequence-specific recognition by restriction endonucle-ases, and is part of replication, transcription and recombination events. Here we discuss experimental and theoretical approaches used to study DNA base flipping in different systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klimasauskas S, Kumar S, Roberts RJ, Cheng X. Hhal methyltransferase flips its target base out of the DNA helix. Cell. 1994;76:357–369.

    Article  Google Scholar 

  2. Cheng X, Roberts RJ. AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res. 2001;29(18):3784–3795.

    Article  Google Scholar 

  3. Duval-Valentin G, Ehrlich R. Dynamic and structural characterization of multiple steps during complex formation between E. coli RNR polymerase and the tetR promoter from pSC101. Nucleic Acids Res. 1987;15(2):575–595.

    Article  Google Scholar 

  4. Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK. Rev1 employs a novel mechanism of DNA synthesis using a protein template. Science. 2005;309:2219–2222.

    Article  ADS  Google Scholar 

  5. Bochtler M, Szczepanowski RH, Tamulaitis G, et al. Nucleotide flips determine the specificity of the Ecl18kI restriction endonuclease. EMBO J. 2006;25(10):2219–2229.

    Article  Google Scholar 

  6. Arita K, Ariyoshi M, Tochio H, Nakamura Y, Shirakawa M. Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature. 2008.

    Google Scholar 

  7. Avvakumov GV, Walker JR, Xue S, et al. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature. 2008.

    Google Scholar 

  8. Hashimoto H, Horton JR, Zhang X, Bostick M, Jacobsen SE, Cheng X. The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature. 2008.

    Google Scholar 

  9. Lariviere L, Morera S. A base-flipping mechanism for the T4 phage b-glucosyltransferase and identification of a transition state analog. J. Mol. Biol. 2002;324:483–490.

    Article  Google Scholar 

  10. Min JH, Pavletich N P. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature. 2007;449(7162):570–575.

    Article  ADS  Google Scholar 

  11. Horton JR, Liebert K, Bekes M, Jeltsch A, Cheng X. Structure and Substrate Recognition of the Escherichia coli DNA Adenine Methyltransferase. J Mol Biol. 2006;358:1–12.

    Article  Google Scholar 

  12. Hosfield DJ, Guan Y, Haas BJ, Cunningham RP, Tainer JA. Structure of the DNA repair enzyme endonuclease IV and its DNA complex: Double-nucleotide flipping at abasic sites and three-metal-ion catalysis. Cell. 1999;98:397–408.

    Article  Google Scholar 

  13. Horton JR, Ratner G, Banavali NK, et al. Caught in the act: visualization of an intermediate in the DNA base-flipping pathway induced by HhaI methyltransferase. Nucleic Acids Res. 2004;32:3877–3886.

    Article  Google Scholar 

  14. Parker JB, Bianchet MA, Krosky DJ, Friedman JI, Amzel LM, Stivers JT. Enzymatic capture of an extrahelical thymine in the search for uracil in DNA. Nature. 2007;449:433–438.

    Article  ADS  Google Scholar 

  15. Reinisch KM, Chen L, Verdine GL, Lipscomb WN. The crystal structure of HaeIII methyltransferase covalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell. 1995;82:143–153.

    Article  Google Scholar 

  16. Gilboa R, Zharkov DO, Golan G, et al. Structure of Formamidopyrimidine-DNA Glycosylase Covalently Complexed to DNA. J Biol Chem. 2002;277(22):19811–19816.

    Article  Google Scholar 

  17. Yang CG, Yi C, Duguid EM, et al. Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA. Nature. 2008;452(7190):961–965.

    Article  ADS  Google Scholar 

  18. Banerjee A, Santos WL, Verdine GL. Structure of a DNA glycosylase searching for lesions. Science. 2006;311(5764):1153–1157.

    Article  ADS  Google Scholar 

  19. Palmer AG, Kroenke C, Loria P. Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol. 2001;339:204–239.

    Article  Google Scholar 

  20. Klimasauskas S, Szyperski T, Serva S, Wuethrich K. Dynamic modes of the flipped-out cytosine during HhaI methyltransferase-DNA interactions in solution. EMBO J. 1998; 17(1):317–324.

    Article  Google Scholar 

  21. Torizawa T, Ueda T, Kuramitsu S, et al. Investigation of the cyclobutane pyrimidine dimer (CPD) photolyase DNA recognition mechanism by NMR analyses. J Biol Chem. 2004;279(31):32950–32956.

    Article  Google Scholar 

  22. Dornberger U, Leijon M, Fritzsche H. High Base Pair Opening Rates in Tracts of GC Base Pairs. J Biol Chem. 1999;274:6957–6962.

    Article  Google Scholar 

  23. Cao C, Jiang YL, Stivers JT, Song F. Dynamic opening of DNA during the enzymatic search for a damaged base. Nat Struct Mol Biol. 2004;11(12):1230–1236.

    Article  Google Scholar 

  24. Roberts RJ, Cheng X. Base flipping. Annu Rev Biochem. 1998;67:181–198.

    Article  Google Scholar 

  25. Banavali NK, MacKerell AD. Free energy and structural pathways of base flipping in a DNA GCGC containing sequence. J Mol Biol. 2002;319:141–160.

    Article  Google Scholar 

  26. Giudice E, Varnai P, Lavery R. Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations. Nucleic Acids Res. 2003;31(5):1434–1443.

    Article  Google Scholar 

  27. Spies MA, Schowen RL. The trapping of a spontaneously “flipped-out” base from double helical nucleic acids by host-guest complexation with b-cyclodextrin: the intrinsic base-flipping rate constant for DNA and RNA. J Am Chem Soc. 2002;124:14049–14053.

    Article  Google Scholar 

  28. Daujotyte D, Serva S, Vilkaitis G, Merkiene E, Venclovas C, Klimasauskas S. HhaI DNA methyltransferase uses the protruding Gln237 for active flipping of its target cytosine. Structure. 2004;12:1047–1055.

    Article  Google Scholar 

  29. Huang N, Banavali NK, MacKerell AD, Jr. Protein-facilitated base flipping in DNA by cytosine-5-methyltransferase. Proc. wNat. Acad. Sci. USA. Jan 7 2003;100(1):68–73.

    Article  ADS  Google Scholar 

  30. Klimasauskas S, Roberts RJ. M.HhaI binds tightly to substrates containing mismatches at the target base. Nucleic Acids Res. 1995;23:1388–1395.

    Article  Google Scholar 

  31. Yang AS, Shen JC, Zingg JM, Mi S, Jones PA. HhaI and HpaII DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair. Nucleic Acids Res. 1995;23:1380–1387.

    Article  Google Scholar 

  32. Krosky DJ, Song F, Stivers JT. The origins of high-affinity enzyme binding to an extra-helical DNA base. Biochemistry. Apr 26 2005;44(16):5949–5959.

    Article  Google Scholar 

  33. Klimasauskas S, Roberts RJ. Disruption of the target G-C base-pair by the HhaI meth-yltransferase. Gene. 1995;157:163–164.

    Article  Google Scholar 

  34. Parikh SS, Mol CD, Slupphaugh G, Bharati S, Krokan HE, Tainer JA. Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J. 1998;17(17):5214–5226.

    Article  Google Scholar 

  35. Stivers JT, Jiang YL. A mechanistic perspective on the chemistry of DNA repair glyco-sylases. Chem Rev. 2003;103:2729–2759.

    Article  Google Scholar 

  36. Hopkins BB, Reich N. Simultaneous DNA binding, bending, and base flipping: evidence for a novel M.EcoRI methyltransferase:DNA complex. J. Biol. Chem. 2004;279:37049–37060.

    Article  Google Scholar 

  37. Gowher H, Jeltsch A. Molecular Enzymology of the EcoRV DNA-(Adenine-N6)-Methyltransferase: Kinetics of DNA Binding and Bending, Kinetic Mechanism and Linear Diffusion of the Enzyme on DNA. J Mol Biol. 2000;303:93–110.

    Article  Google Scholar 

  38. Hosfield DJ, Guan Y, Haas BJ et al. Structure of the DNA repair enzyme endonuclease IV and its DNA complex: Double-nucleotide flipping at a basic sites and three-metal-ion catalysis. Cell 1999;98:397–408.

    Article  Google Scholar 

  39. Jiang YL, Stivers JT. Base-Flipping Mutations of Uracil DNA Glycosylase: Substrate Rescue Using a Pyrene Nucleotide Wedge. Biochemistry. 2002;41:11248–11254.

    Article  Google Scholar 

  40. Beuck C, Singh I, Bhattacharya A, et al. Polycyclic aromatic DNA-base surrogates: high-affinity binding to an adenine-specific base-flipping DNA methyltransferase. Angew Chem Int Ed Engl. 2003;42(33):3958–3960.

    Article  Google Scholar 

  41. Wang P, Nicklaus MC, Marquez VE, et al. Use of oligodeoxyribonucleotides with confor-mationally constrained abasic sugar targets to probe the mechanism of base flipping by HhaI DNA (cytosine C5)-methyltransferase. J Am Chem Soc. 2000;122(50):12422–12434.

    Article  Google Scholar 

  42. Ward DC, Reich E, Stryer L. Fluorescence studies of nucleotides and polynucleotides. I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives. J Biol Chem. 1969;244(5):1228–1237.

    Google Scholar 

  43. Kelley SO, Barton JK. Electron transfer between bases in double helical DNA. Science. 1999;283(5400):375–381.

    Article  ADS  Google Scholar 

  44. Jean JM, Hall KB. 2-Aminopurine fluorescence quenching and lifetimes: role of base stacking. Proc Natl Acad Sci U S A. 2001;98(1):37–41.

    Article  Google Scholar 

  45. Rachofsky EL, Osman R, Ross JBA. Probing structure and dynamics of DNA with 2-Aminopurine: effects of local environment on fluorescence. Biochemistry. 2001;40:946–956.

    Article  Google Scholar 

  46. Allan B W, Reich N. Targeted base stacking disruption by the EcoRI DNA methyltrans-ferase. Biochemistry. 1996;35(47):14757–14762.

    Article  Google Scholar 

  47. Holz B, Klimasauskas S, Serva S, Weinhold E. 2-Amino purine as a fluorescence probe for DNA base flipping by methyltransferases. Nucleic Acids Res. 1998;26(4):1076–1083.

    Article  Google Scholar 

  48. Tamulaitis G, Zaremba M, Szczepanowski RH, Bochtler M, Siksnys V. Nucleotide flipping by restriction enzymes analyzed by 2-aminopurine steady-state fluorescence. Nucleic Acids Res. 2007;35(14):4792–4799.

    Article  Google Scholar 

  49. Lenz T, Bonnist EY, Pljevaljcic G, et al. 2-Aminopurine flipped into the active site of the adenine-specific DNA methyltransferase M.TaqI: crystal structures and time-resolved fluorescence. J Am Chem Soc. 2007;129(19):6240–6248.

    Article  Google Scholar 

  50. Reddy YV, Rao DN. Binding of EcoP15I DNA methyltransferase to DNA reveals a large structural distortion within the recognition sequence. J Mol Biol. 2000;298(4):597–610.

    Article  Google Scholar 

  51. Christine KS, MacFarlane AWt, Yang K, Stanley RJ. Cyclobutylpyrimidine dimer base flipping by DNA photolyase. J Biol Chem. 2002;277(41):38339–38344.

    Article  Google Scholar 

  52. Vilkaitis G, Dong A, Weinhold E, Cheng X, Klimasauskas S. Functional roles of the conserved threonine 250 in the target recognition domain of HhaI DNA methyltransferase. J Biol Chem. 2000;275(49):38722–38730.

    Google Scholar 

  53. Stivers JT, Pankiewicz KW, Watanabe KA. Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase. Biochemistry. 1999;38(3):952–963.

    Article  Google Scholar 

  54. Wong I, Lundquist AJ, Bernards AS, Mosbaugh D W. Presteady-state analysis of a single catalytic turnover by Escherichia coli uracil-DNR glycosylase reveals a “pinch-pull-push” mechanism. J Biol Chem. 2002;277(22):19424–19432.

    Article  Google Scholar 

  55. Neely RK, Daujotyte D, Grazulis S, et al. Time-resolved fluorescence of 2-aminopu-rine as a probe of base flipping in M.HhaI-DNA complexes. Nucleic Acids Res. 2005;33(22):6953–6960.

    Article  Google Scholar 

  56. Hawkins ME, Pfleiderer W, Jungmann O, Balis FM. Synthesis and fluorescence characterization of pteridine adenosine nucleoside analogs for DNA incorporation. Anal Biochem. 2001;298(2):231–240.

    Article  Google Scholar 

  57. Yang K, Matsika S, Stanley RJ. 6MAP, a fluorescent adenine analogue, is a probe of base flipping by DNA photolyase. J Phys Chem B. 2007;111(35):10615–10625.

    Article  Google Scholar 

  58. Yang K, Stanley RJ. The extent of DNA deformation in DNA photolyase— substrate complexes: a solution state fluorescence study. Photochem Photobiol. 2008;84(3): 741–749.

    Article  Google Scholar 

  59. Mees A, Klar T, Gnau P, et al. Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science. 2004;306(5702):1789–1793.

    Article  ADS  Google Scholar 

  60. Rajski SR, Barton JK. How different DNA-binding proteins affect long-range oxidative damage to DNA. Biochemistry. 2001;40:5556–5564.

    Article  Google Scholar 

  61. Jeltsch A, Roth M, Friedrich T. Mutational analysis of target base flipping by the EcoRV adenine-N6 DNA methyltransferase. J Mol Biol. 1999;285(3):1121–1130.

    Article  Google Scholar 

  62. Daujotyte D, Klimasauskas S. Affinity photo-crosslinking study of the DNA base flipping pathway by HhaI methyltransferase. Nucleic Acids Symp Ser. 2000;(4)271–272.

    Google Scholar 

  63. Nielsen PE. Chemical and photochemical probing of DNA complexes. J. Mol Recognit. 1990;3(1):1–25.

    Article  Google Scholar 

  64. Lilley DMJ. Probes for DNA structure. Methods Enzymol. 1992;212:133–139.

    Article  Google Scholar 

  65. Rokita SE. Chemical and enzymatic probes for nucleic acids structure. In: Beaucage SL, Bergstrom DE, Glick GD, Jones RA, eds. Current Protocols in Nucleic Acids Chemistry. Vol 6.6: John Wiley & sons; 2001:1–16.

    Google Scholar 

  66. McLean MJ, Larson JE, Wohlrab F, Wells RD. Reaction conditions affect the specificity of bromoacetaldahyde as a probe for DNA cruciforms and B-Z junctions. Nucleic Acids Res. 1987;15(17):6917–6935.

    Article  Google Scholar 

  67. Guerin M, Leng M, Rahmouni AR. High resolution mapping of E.coli transcription elongation complex in situ reveals protein interactions with the non-transcribed strand. EMBO J. 1996;15(19):5397–5407.

    Google Scholar 

  68. Sasse-Dwight S, Gralla JD. KMnO4 as a probe for lac promoter DNA melting and mechanism in vivo. J Biol Chem. 1989;264(14):8074–8081.

    Google Scholar 

  69. Serva S, Weinhold E, Roberts RJ, Klimasauskas S. Chemical display of thymine residues flipped out by DNA methyltransferases. Nucleic Acids Res. 1998;26(15):3473–3479.

    Article  Google Scholar 

  70. Bischerour J, Chalmers R. Base-flipping dynamics in a DNA hairpin processing reaction. Nucleic Acids Res. 2007;35(8):2584–2595.

    Article  Google Scholar 

  71. Kusmierek JT, Singer B. Chloroacetaldehyde-treated ribo- and deoxyribopolynucleotides. 1. Reaction products. Biochemistry. 21(22) 5717 5722.

    Article  Google Scholar 

  72. Kohwi-Shigematsu T, Kohwi Y. Detection of non-B-DNA structures at specific sites in supercoiled plasmid DNA and chromatin with haloacetaldehyde and diethyl pyrocarbonate. Methods Enzymol. 1992,212:155–180.

    Article  Google Scholar 

  73. Daujotyte D, Liutkeviciute Z, Tamulaitis G, Klimasauskas S. Chemical mapping of cytosines enzymatically flipped out of the DNA helix. Nucleic Acids Res. 2008.

    Google Scholar 

  74. Price MA, Tullius TD. Using hydroxyl radical to probe DNA structure. Methods Enzymol. 1992;212:194–219.

    Article  Google Scholar 

  75. Renbaum P, Razin A. Footprint Analysis of M.SssI and M.HhaI Methyltransferases Reveals Extensive Interactions with the Substrate DNA Backbone. J Mol Biol. 1995;248:19–26.

    Article  Google Scholar 

  76. Finta C, Kiss A. Footprint analysis of the BspRI DNA methyltransferase-DNA interaction. Nucleic Acids Res. 1997;25(14):2841–2846.

    Article  Google Scholar 

  77. Mernagh DR, Kneale GG. High resolution footprinting of a type I methyltransferase reveals a large structural distortion within the DNA recognition site. Nucleic Acids Res. 1996;24(24):4853–4858.

    Article  Google Scholar 

  78. Goedecke K, Pignot M, Goody RS, Scheidig AJ, Weinhold E. Structure of the N6-adenine DNA methyltransferase M.TaqI in complex with DNA and a cofactor analog. Nature Struct. Biol. 2001;8(2):121–125.

    Article  Google Scholar 

  79. Horton JR, Liebert K, Hattman S, Jeltsch A, Cheng X. Transition from nonspecific to specific DNA interactions along the substrate-recognition pathway of Dam methyltrans-ferase. Cell. 2005;121:349–361.

    Article  Google Scholar 

  80. Vassylyev DG, Kashiwagi T, Mikami Y, et al. Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition. Cell. 1995;83:773–782.

    Article  Google Scholar 

  81. Slupphaug G, Mol CD, Kavli B, Arvai AS, Krokan HE, Tainer JA. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature. 1996;384:87–92.

    Article  ADS  Google Scholar 

  82. Barrett TE, Savva R, Panayotou G, et al. Crystal structure of a G:T/U mismatch-specific DNA glycosylase: Mismatch recognition by complementary-strand interactions. Cell. 1998;92:117–129.

    Article  Google Scholar 

  83. Lau AY, Schaerer OD, Samson L, Verdine GL, Ellenberger T. Crystal structure of a human alkylbase-DNA repair enzymes complexed to DNA: Mechanisms for nucleotide flipping and base excision. Cell. 1998;95:249–258.

    Article  Google Scholar 

  84. Hollis T, Ichikawa Y, Ellenberger T. DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA. EMBO J. 2000;19(4):758–766.

    Article  Google Scholar 

  85. Bruner SD, Norman DP, Verdine GL. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature. 2000;403:859–866.

    Article  ADS  Google Scholar 

  86. Fromme JC, Verdine GL. Structure of a trapped endonuclease III-DNA covalent intermediate. EMBO J. 2003;22:3461–3471.

    Article  Google Scholar 

  87. Fromme JC, Banerjee A, Huang N, Verdine GL. Structural Basis for Removal of Adenine Mispaired with 8-Oxoguanine by Muty Adenine DNA Glycosylase. Nature. 2004;427:652–656.

    Article  ADS  Google Scholar 

  88. Mol CD, Izumi T, Mitra S, Tainer JA. DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination. Nature. 2000;403:451–456.

    Article  ADS  Google Scholar 

  89. Lariviere L, Sommer N, Morera S. Structural evidence of a passive base-flipping mechanism for AGT, an unusual GT-B glycosyltransferase. J Mol Biol. 2005;352:139–150.

    Article  Google Scholar 

  90. Horton JR, Zhang X, Maunus R, et al. DNA nicking by HinP1I endonuclease: bending, base flipping and minor groove expansion. Nucleic Acids Res. 2006;34:939–948.

    Article  Google Scholar 

  91. Szczepanowski RH, Carpenter MA, H. C, et al. Central base pair flipping and discrimination by PspGI. Nucleic Acids Research. 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

KlimaŠauskas, S., LiutkeviČiŪtĖ, Z., DaujotytĖ, D. (2009). Biophysical Approaches To Study Dna Base Flipping. In: Puglisi, J.D. (eds) Biophysics and the Challenges of Emerging Threats. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2368-1_4

Download citation

Publish with us

Policies and ethics