Skip to main content

EEG Classification of Mild and Severe Alzheimer's Disease Using Parallel Factor Analysis Method

PARAFAC Decomposition of Spectral-Spatial Characteristics of EEG Time Series

  • Chapter

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 39))

Electroencephalograms (EEG) recordings are now widely used more and more as a method to assess the susceptibility to Alzheimer's disease. In this study, we aimed at classifying control subjects from subjects with mild cognitive impairment (MCI) and from Alzheimer's disease (AD). For each subject, we computed the relative Fourier power of five frequency bands. Then for each frequency band, we estimated the mean power of five brain regions: frontal, left temporal, central, right temporal and posterior. There were an equivalent number of electrodes in each of the five regions. This grouping is very useful in normalizing the regional repartition of the information. We can form a three-way tensor, which is the Fourier power by frequency band and by brain region for each subject. From this tensor, we extracted characteristic filters for the classification of subjects using linear and nonlinear classifiers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferri, C.P. et al. Global prevalence of dementia: a Delphi consensus study. The Lancet 366, 2112–2117 (2006).

    Article  Google Scholar 

  2. Alexander, G.E. Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer's disease treatment studies. American Journal of Psychiatry 159, 738–745 (2002).

    Article  Google Scholar 

  3. Deweer, B. et al. Memory disorders in probable Alzheimer's disease: the role of hippocampal atrophy as shown with MRI. British Medical Journal 58, 590 (1995).

    Google Scholar 

  4. Tanzi, R.E. & Bertram, L. New frontiers in Alzheimer's disease genetics. Neuron 32, 181–184 (2001).

    Article  Google Scholar 

  5. Andreasen, N. et al. Evaluation of CSF-tau and CSF-Aβ42 as Diagnostic Markers for Alzheimer Disease in Clinical Practice, Archives of Neurology, 58, pp. 373–379 (2001).

    Google Scholar 

  6. Cichocki, A. et al. EEG filtering based on blind source separation (BSS) for early detection of Alzheimer's disease. Clinical Neurophysiology 116, 729–737 (2005).

    Article  Google Scholar 

  7. Buscema, M., Rossini, P., Babiloni, C. & Grossi, E. The IFAST model, a novel parallel nonlinear EEG analysis technique, distinguishes mild cognitive impairment and Alzheimer's disease patients with high degree of accuracy. Artificial Intelligence in Medicine 40, 127–141 (2007).

    Article  Google Scholar 

  8. Huang, C. et al. Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study. Clinical Neurophysiology 111, 1961–1967 (2000).

    Article  Google Scholar 

  9. Musha, T. et al. A new EEG method for estimating cortical neuronal impairment that is sensitive to early stage Alzheimer's disease. Clinical Neurophysiology 113, 1052–1058 (2002).

    Article  Google Scholar 

  10. Pritchard, W.S. et al. EEG-based, neural-net predictive classification of Alzheimer's disease versus control subjects is augmented by non-linear EEG measures. Electroencephalography and Clinical Neurophysiology 91, 118–30 (1994).

    Article  Google Scholar 

  11. Woon, W.L., Cichocki, A., Vialatte, F. & Musha, T. Techniques for early detection of Alzheimer's disease using spontaneous EEG recordings. Physiological Measurement 28, 335–347 (2007).

    Article  Google Scholar 

  12. Acar, E., Aykut-Bingol, C., Bingol, H., Bro, R. & Yener, B. Multiway analysis of epilepsy tensors. Bioinformatics 23, i10–i18 (2007).

    Article  Google Scholar 

  13. Acar, E., Bing, C.A., Bing, H. & Yener, B. in Proceedings of the 24th IASTED International Conference on Biomedical Engineering 317–322 (2006).

    Google Scholar 

  14. Lee, H., Kim, Y.D., Cichocki, A. & Choi, S. Nonnegative tensor factorization for continuous EEG classification. International Journal of Neural Systems 17, 305 (2007).

    Article  Google Scholar 

  15. Andersson, C.A. & Bro, R. The N-way toolbox for MATLAB. Chemometrics and Intelligent Laboratory Systems 52, 1–4 (2000).

    Article  Google Scholar 

  16. Bro, R. & Kiers, H.A.L. A new efficient method for determining the number of components in PARAFAC models. Contract 1999, 10377 (1984).

    Google Scholar 

  17. Coben, L.A., Danziger, W.L. & Berg, L. Frequency analysis of the resting awake EEG in mild senile dementia of Alzheimer type. Electroencephalography and Clinical Neurophysiology 55, 372–380 (1983).

    Article  Google Scholar 

  18. Sloan, E.P., Fenton, G.W., Kennedy, N.S.J. & MacLennan, J.M. Electroencephalography and single photon emission computed tomography in dementia: a comparative study. Psychological Medicine 25, 631 (1995).

    Article  Google Scholar 

  19. Atkinson, A.C. & Riani, M. Exploratory tools for clustering multivariate data. Computational Statistics and Data Analysis 52, 272–285 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  20. Bro, R. PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems 38, 149–171 (1997).

    Article  Google Scholar 

  21. Al Kiers, H., Ten Berge, J. & Bro, R. PARAFAC2: PART I. a direct fitting algorithm for the PARAFAC2 model. Journal of Chemometrics 13, 275–294 (1999).

    Article  Google Scholar 

  22. Kim, Y.D., Cichocki, A. & Choi, S. in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-2008) (IEEE, Las Vegas, Nevada, 2008).

    Google Scholar 

  23. Cichocki, A., Zdunek, R. & Amari, S. Nonnegative matrix and tensor factorization. Signal Processing Magazine, IEEE 25, 142–145 (2008).

    Article  Google Scholar 

  24. Cichocki, A., Zdunek, R., Plemmons, R. & Amari, S. in ICANNGA-2007 (ed. Science, L.N.i.C.) 271–280 (Springer, Warsaw, Poland, 2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Latchoumane, CF.V., Vialatte, FB., Jeong, J., Cichocki, A. (2009). EEG Classification of Mild and Severe Alzheimer's Disease Using Parallel Factor Analysis Method. In: Ao, SI., Gelman, L. (eds) Advances in Electrical Engineering and Computational Science. Lecture Notes in Electrical Engineering, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2311-7_60

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2311-7_60

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2310-0

  • Online ISBN: 978-90-481-2311-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics