Skip to main content

Coronary Artery Stenosis on Cardiac CT

  • Chapter
Clinical Applications of Cardiac CT

Abstract

Nearly 55 years after its invention, invasive coronary angiography is still considered to be the “gold standard” method for the assessment of coronary stenosis and for planning and guiding percutaneous coronary intervention (PCI) [13]. Angiography is a two-dimensional imaging modality that depicts coronary anatomy as a planar silhouette of the contrast-filled lumen. Modern angiographic equipment yields a spatial resolution approximately of 0.2 mm in the clinical setting [3]. The procedure is associated with a small but definable risk (<2%) and is relatively expensive [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sones FM, Shirey EK (1962) Cine coronary arteriography. Mod Concepts Cardiovasc Dis 31:735–738

    PubMed  Google Scholar 

  2. Topol EJ, Nissen SE (1995) Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92:2333–2342

    PubMed  CAS  Google Scholar 

  3. Scanlon PJ, Faxon DP, Audet AM et al (1999) ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol 33:1756–1824

    Article  PubMed  CAS  Google Scholar 

  4. Ota H, Takase K, Rikimaru H et al (2005) Quantitative vascular measurements in arterial occlusive disease. Radiographics 25:1141–1158

    Article  PubMed  Google Scholar 

  5. Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33:87–94

    Article  PubMed  CAS  Google Scholar 

  6. Kern MJ, Donohue TJ, Aguirre FV et al (1993) Assessment of angiographically intermediate coronary artery stenosis using the Doppler flowire. Am J Cardiol 71:26D–33D

    Article  PubMed  CAS  Google Scholar 

  7. White CW, Wright CB, Doty DB et al (1984) Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310:819–824

    Article  PubMed  CAS  Google Scholar 

  8. Pijls NH, Van Gelder B, Van der Voort P et al (1995) Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 92:3183–3193

    PubMed  CAS  Google Scholar 

  9. Pijls NHJ, De Bruyne B, Peels K et al (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334:1703–1708

    Article  PubMed  CAS  Google Scholar 

  10. Feldman RL, Nichols WW, Pepine CJ, Conti CR (1978) Hemodynamic effects of long and multiple coronary artery narrowings. Chest 74:280–285

    Article  PubMed  CAS  Google Scholar 

  11. Feldman RL, Nichols WW, Pepine CJ, Conetta DA, Conti CR (1979) The coronary hemodynamics of left main and branch coronary stenoses. The effects of reduction in stenosis diameter, stenosis length, and number of stenoses. J Thorac Cardiovasc Surg 77:377–388

    PubMed  CAS  Google Scholar 

  12. Harrison DG, White CW, Hiratzka LF et al (1984) The value of lesion cross-sectional area determined by quantitative coronary angiography in assessing the physiologic significance of proximal left anterior descending coronary arterial stenoses. Circulation 69:1111–1119

    Article  PubMed  CAS  Google Scholar 

  13. Kirkeeide RL, Gould KL, Parsel L (1986) Assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation: VII. Validation of coronary flow reserve as a single integrated functional measure of stenosis severity reflecting all its geometric dimensions. J Am Coll Cardiol 7:103–111

    Article  PubMed  CAS  Google Scholar 

  14. Dodds SR, Phillips PS (2003) The haemodynamics of multiple sequential stenoses and the criteria for a critical stenosis. Eur J Vasc Endovasc Surg 26:348–353

    Article  PubMed  CAS  Google Scholar 

  15. Hamon M, Morello R, Riddell JW, Hamon M (2007) Coronary arteries: diagnostic performance of 16-versus 64-section spiral CT compared with invasive coronary angiography—meta-analysis. Radiology 245:720–731

    Article  PubMed  Google Scholar 

  16. Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R et al (2007) Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology 244:419–428

    Article  PubMed  Google Scholar 

  17. Abdulla J, Abildstrom SZ, Gotzsche O et al (2007) 64-multislice detector computed tomography coronary angiography as potential alternative to conventional coronary angiography: a systematic review and meta-analysis. Eur Heart J 28:3042–3050

    Article  PubMed  Google Scholar 

  18. Meijer AB, O YL, Geleijns J, Kroft LJ (2008) Meta-analysis of 40-and 64-MDCT angiography for assessing coronary artery stenosis. AJR Am J Roentgenol 191:1667–1675

    Article  PubMed  Google Scholar 

  19. Mowatt G, Cook JA, Hillis GS et al (2008) 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. Heart 94:1386–1393

    Article  PubMed  CAS  Google Scholar 

  20. Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M (2010) Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med 152:167–177

    PubMed  Google Scholar 

  21. Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multi center ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography trial). J Am Coll Cardiol 52:1724–1732

    Article  PubMed  Google Scholar 

  22. Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336

    Article  PubMed  CAS  Google Scholar 

  23. Miller JM, Dewey M, Vavere AL et al (2009) Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64. Eur Radiol 19:816–828

    Article  PubMed  Google Scholar 

  24. Meijboom WB, Meijs MF, Schuijf JD et al (2008) Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 52:2135–2144

    Article  PubMed  Google Scholar 

  25. Maffei E, Palumbo A, Martini C et al (2010) Diagnostic accuracy of 64-slice computed tomography coronary angiography in a large population of patients without revascularisation: registry data and review of multicentre trials. Radiol Med 115:368–384

    Article  PubMed  CAS  Google Scholar 

  26. Cademartiri F, Mollet NR, Lemos PA et al (2005) Impact of coronary calcium score on diagnostic accuracy for the detection of significant coronary stenosis with multislice computed tomography angiography. Am J Cardiol 95:1225–1227

    Article  PubMed  CAS  Google Scholar 

  27. Cademartiri F, Runza G, Mollet NR et al (2005) Impact of intravascular enhancement, heart rate, and calcium score on diagnostic accuracy in multislice computed tomography coronary angiography. Radiol Med 110:42–51

    PubMed  Google Scholar 

  28. Mollet NR, Cademartiri F, van Mieghem CA et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323

    Article  PubMed  Google Scholar 

  29. Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487

    Article  PubMed  Google Scholar 

  30. Leber AW, Knez A, von Ziegler F et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154

    Article  PubMed  Google Scholar 

  31. Weustink AC, Mollet NR, Neefjes LA et al (2010) Diagnostic accuracy and clinical utility of noninvasive testing for coronary artery disease. Ann Intern Med 152:630–639

    PubMed  Google Scholar 

  32. Cheng V, Gutstein A, Wolak A et al (2008) Moving beyond binary grading of coronary arterial stenoses on coronary computed tomographic angiography: insights for the imager and referring clinician. JACC Cardiovasc Imaging 1:460–471

    Article  PubMed  Google Scholar 

  33. Achenbach S (2008) Quantification of coronary artery stenoses by computed tomography. JACC Cardiovasc Imaging 1:472–474

    Article  PubMed  Google Scholar 

  34. Raff GL, Abidov A, Achenbach S et al (2009) Society of Cardiovascular Computed Tomography. SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography. J Cardiovasc Comput Tomogr 3:122–136

    Article  PubMed  Google Scholar 

  35. Kantarci M, Ceviz N, Sevimli S et al (2007) Diagnostic performance of multidetector computed tomography for detecting aortoostial lesions compared with catheter coronary angiography: multidetector computed tomography coronary angiography is superior to catheter angiography in detection of aorto-ostial lesions. J Comput Assist Tomogr 31:595–599

    Article  PubMed  Google Scholar 

  36. Hecht HS, Roubin G (2007) Usefulness of computed tomographic angiography guided percutaneous coronary intervention. Am J Cardiol 99:871–875

    Article  PubMed  Google Scholar 

  37. Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47(8 Suppl):C13–18

    Article  PubMed  CAS  Google Scholar 

  38. Achenbach S, Ropers D, Hoffmann U et al (2004) Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol 43:842–847

    Article  PubMed  Google Scholar 

  39. Schroeder S, Kuettner A, Leitritz M et al (2004) Reliability of differentiating human coronary plaque morphology using contrast-enhanced multislice spiral computed tomography: a comparison with histology. J Comput Assist Tomogr 28:449–454

    Article  PubMed  Google Scholar 

  40. Leschka S, Seitun S, Dettmer M et al (2010) Ex vivo evaluation of coronary atherosclerotic plaques: characterization with dual-source CT in comparison with histopathology. J Cardiovasc Comput Tomogr 4:301–308

    Article  PubMed  Google Scholar 

  41. Mollet NR, Hoye A, Lemos PA, et al (2005) Value of preprocedure multislice computed tomographic coronary angiography to predict the outcome of percutaneous recanalization of chronic total occlusions. Am J Cardiol 95:240–243

    Article  PubMed  Google Scholar 

  42. Shaw LJ, Berman DS, Maron DJ et al (2008) Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 117:1283–1291

    Article  PubMed  Google Scholar 

  43. Erne P, Schoenenberger AW, Burckhardt D et al (2007) Effects of percutaneous coronary interventions in silent ischemia after myocardial infarction: the SWISSI II randomized controlled trial. JAMA 297:1985–1991

    Article  PubMed  CAS  Google Scholar 

  44. Boden WE, O’Rourke RA, Teo KK et al (2007) Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 356:1503–1516

    Article  PubMed  CAS  Google Scholar 

  45. Pijls NH, van Schaardenburgh P, Manoharan G et al (2007) Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol 49:2105–2111

    Article  PubMed  Google Scholar 

  46. Hacker M, Jakobs T, Matthiesen F et al (2005) Comparison of spiral multidetector CT angiography and myocardial perfusion imaging in the noninvasive detection of functionally relevant coronary artery lesions: first clinical experiences. J Nucl Med 46:1294–1300

    PubMed  Google Scholar 

  47. Schuijf JD, Wijns W, Jukema JW et al (2006) Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol 48:2508–2514

    Article  PubMed  Google Scholar 

  48. Hacker M, Jakobs T, Hack N et al (2007) Sixty-four slice spiral CT angiography does not predict the functional relevance of coronary artery stenoses in patients with stable angina. Eur J Nucl Med Mol Imaging 34:4–10

    Article  PubMed  Google Scholar 

  49. Rispler S, Keidar Z, Ghersin E et al (2007) Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J Am Coll Cardiol 49:1059–1067

    Article  PubMed  Google Scholar 

  50. Di Carli MF, Dorbala S, Curillova Z et al (2007) Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET-CT imaging. J Nucl Cardiol 14:799–809

    Article  PubMed  Google Scholar 

  51. Gaemperli O, Schepis T, Valenta I et al (2008) Functionally relevant coronary artery disease: comparison of 64-section CT angiography with myocardial perfusion SPECT. Radiology 248:414–423

    Article  PubMed  Google Scholar 

  52. van Werkhoven JM, Schuijf JD, Gaemperli O et al (2009) Prognostic value of multislice computed tomography and gated singlephoton emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol 53:623–632

    Article  PubMed  Google Scholar 

  53. Chen ML, Mo YH, Wang YC et al (2011) 64-slice CT angiography for the detection of functionally significant coronary stenoses: comparison with stress myocardial perfusion imaging. Br J Radiol [Epub ahead of print]

    Google Scholar 

  54. Di Carli MF, Dorbala S, Meserve J et al (2007) Clinical myocardial perfusion PET/CT. J Nucl Med 48:783–793

    Article  PubMed  Google Scholar 

  55. Chao SP, Law WY, Kuo CJ et al (2010) The diagnostic accuracy of 256-row computed tomographic angiography compared with invasive coronary angiography in patients with suspected coronary artery disease. Eur Heart J 31:1916–1623

    Article  PubMed  Google Scholar 

  56. Dewey M, Zimmermann E, Deissenrieder F et al (2009) Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation 120:867–875

    Article  PubMed  Google Scholar 

  57. Min JK, Swaminathan RV, Vass M et al (2009) High-definition multidetector computed tomography for evaluation of coronary artery stents: comparison to standard-definition 64-detector row computed tomography. J Cardiovasc Comput Tomogr 3:246–251

    Article  PubMed  Google Scholar 

  58. Achenbach S, Marwan M, Ropers D et al (2010) Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J 31:340–346

    Article  PubMed  Google Scholar 

  59. Earls JP, Berman EL, Urban BA et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246:742–753

    Article  PubMed  Google Scholar 

  60. von Ballmoos MW, Haring B, Juillerat P, Alkadhi H (2011) Metaanalysis: diagnostic performance of low-radiation-dose coronary computed tomography angiography. Ann Intern Med 154:413–420 Erratum in: (2011) Ann Intern Med 154:848

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Seitun, S., Maffei, E., Martini, C., Morelli, M.C., Cademartiri, F. (2012). Coronary Artery Stenosis on Cardiac CT. In: Cademartiri, F., Casolo, G., Midiri, M. (eds) Clinical Applications of Cardiac CT. Springer, Milano. https://doi.org/10.1007/978-88-470-2522-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2522-6_12

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2521-9

  • Online ISBN: 978-88-470-2522-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics