Skip to main content

A brief review of numerical methods for collision operators

  • Conference paper
  • 1184 Accesses

Summary

In this review, we present numerical methods for approx imating collision operators in kinetic theory. We refer to [29] for a similar paper concerning the Vlasov equation. Various collision operators are described (Boltzmann, Fokker-Planck) and the three main numerical methods (Spectral, Discrete Velocity and Monte Carlo) are briefly shown.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andriès, P., Le Tallec, P., Perlat, J.-P., Perthame, B. (2000): The Gaussian-BGK model of Boltzmann equation with small Prandtl number. Eur. J. Mech. B Fluids 19, 813–830

    Article  MathSciNet  MATH  Google Scholar 

  2. Babovsky, H., Illner, R. (1989): A convergence proof for Nanbu’s simulation method for the full Boltzmann equation, SIAM J. Numer. Anal. 26, 45–65

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellomo, N., Gatignol, R. (eds.) (2003): Lecture notes on the discretization of the Boltzmann equation. World Scientific, Singapore

    Google Scholar 

  4. Bird, G.A. (1970): Direct simulation and the Boltzmann equation. Phys. Fluids A 13, 2672–2681

    Google Scholar 

  5. Bird, G.A. (1994): Molecular gas dynamics and the direct simulation of gas flows. Oxford Science Publications, Oxford

    Google Scholar 

  6. Boudin, L., Desvillettes, L. (2000): On the singularities of the global small solutions of the full Boltzmann equation. Monatsh. Math. 131, 91–108

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgat, J.-E, Le Tallec, P., Perthame, B., Qiu, Y. (1994): Coupling Boltzmann and Euler equations without overlapping. In: Quarteroni, A. et al. (eds.): Domain decomposition methods in science and engineering. (Contemporary Mathematics, vol. 157). American Mathematical Society, Providence, RI, pp. 377–398

    Chapter  Google Scholar 

  8. Buet, C. (1997): Conservative and entropy schemes for Boltzmann collision operator of polyatomic gases. Math. Models Methods Appl. Sci. 7, 165–192

    Article  MathSciNet  MATH  Google Scholar 

  9. Buet, C., Cordier, S. (1999): Numerical analysis of conservative and entropy schemes for the Fokker-Planck-Landau equation. SIAM J. Numer. Anal. 36, 953–973

    Article  MathSciNet  Google Scholar 

  10. Buet, C., Cordier, S. (1998): Conservative and entropy decaying numerical scheme for the isotropic Fokker-Planck-Landau equation. J. Comput. Phys. 145, 228–245

    Article  MathSciNet  MATH  Google Scholar 

  11. Buet, C; Cordier, S., Degond, P., Lemou, M. (1997): Fast algorithms for numerical, conservative, and entropy approximations of the Fokker-Planck-Landau equation. J. Comput. Phys. 133, 310–322

    Article  MathSciNet  MATH  Google Scholar 

  12. Buet, C., Cordier, S., Filbet, E (1999): Comparison of numerical schemes for Fokker-Planck-Landau equation. In: Coquel, E, Cordier, S. (eds.): CEMRACS. (ESAIM Proceedings, vol. 10). Société de Mathemátiques Appliquées et Industrielles, Paris, pp. 161–181. http://www.emath.fr/Maths/Proc/Vol.10

    Google Scholar 

  13. Buet, C., Cordier, S., Lucquin-Desreux, B. (2001): The grazing collision limit for the Boltzmann-Lorentz model. Asymptot. Anal. 25, 93–107

    MathSciNet  MATH  Google Scholar 

  14. Buet, C., Cordier, S., Lucquin-Desreux, B., Mancini, S. (2002): Diffusion limit of the Lorentz model: asymptotic preserving schemes. M2AN Math. Model. Numer. Anal. 36, 631–655

    Article  MathSciNet  MATH  Google Scholar 

  15. Caflisch, R.E., Pareschi, L. (1999): An implicit Monte Carlo method for rarefied gas dynamics. I. The space homogeneous case. J. Comput. Phys. 154, 90–116

    Article  MathSciNet  MATH  Google Scholar 

  16. Cercignani, C. (1988): The Boltzmann equation and its applications. Springer, Berlin

    Book  MATH  Google Scholar 

  17. Cercignani, C., Illner, R., Pulvirenti, M. (1994): The mathematical theory of dilute gases. Springer, New York

    MATH  Google Scholar 

  18. Chen, G.Q., Levermore, C.D., Liu, T.-P. (1994): Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Appl. Math. 47, 787–830

    Article  MathSciNet  MATH  Google Scholar 

  19. Cordier, S., Lucquin-Desreux, B., Mancini, S. (2002): Focalization: a numerical test for smoothing effects of collision operators. J. Sci. Comput., submitted

    Google Scholar 

  20. Cordier, S., Lucquin-Desreux, B., Sabry, A. (1999): Numerical method for VlasovLorentz models. In: Coquel, E, Cordier, S. (eds.): CEMRACS. (ESAIM Proceedings, vol. 10). Société de Mathématiques Appliquées et Industrielles, Paris, pp. 201–210. http://www.emath.fr/Maths/Proc/Vol.10

    Google Scholar 

  21. Coron, E, Perthame, B. (1991): Numerical passage from kinetic to fluid equations. SIAM J. Numer. Anal. 28, 26–42

    Article  MathSciNet  MATH  Google Scholar 

  22. Degond, P., Lucquin-Desreux, B. (1992): The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case. Math. Models Methods Appl. Sci. 2, 167–182

    Article  MathSciNet  MATH  Google Scholar 

  23. Degond, P., Lucquin-Desreux, B. (1994): An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory. Numer. Math. 68, 239–262

    Article  MathSciNet  MATH  Google Scholar 

  24. Degond, P., Lucquin-Desreux, B. (1996): The asymptotics of collision operators for two species of particles of disparate masses. Math. Models Methods Appl. Sci. 6, 405–436

    Article  MathSciNet  MATH  Google Scholar 

  25. Desvillettes, L. (1992): On asymptotics of the Boltzmann equation when the collisions become grazing. Transport Theory Statist. Phys. 21, 259–276

    Article  MathSciNet  MATH  Google Scholar 

  26. Desvillettes, L., Villani, C. (2000): On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness. II. H-theorem and applications. Comm. Partial Differential Equations 25, 179–259, 261–298

    Article  MathSciNet  MATH  Google Scholar 

  27. Dubroca, B., Mieussens, L. (1999): Aconservative and entropic discrete-velocity model for rarefied polyatomic gases. In: Coquel, E, Cordier, S. (eds.): CEMRACS. (ESAIM Proceedings, vol. 10). Societe de Mathematiques Appliquees et Industrielles, Paris, pp. 127–139. http://www.emath.fr/Maths/Proc/Vol.10

    Google Scholar 

  28. Filbet, E, Russo, G.: High order numerical methods for the space homogeneous Boltzmann equation, in preparation

    Google Scholar 

  29. Filbet, E, Sonnendrücker, E. (2002): Numerical methods for the Vlasov equation. In: Brezzi, F. et al. (eds.): Numerical mathematics and advanced applications, Proceedings of ENUMATH 2001. Springer-Verlag Italia, Milano, pp. 459–468

    Google Scholar 

  30. Gabetta, E., Pareschi, L., Toscani, G. (1997): Relaxation schemes for nonlinear kinetic equations. SIAM J. Numer. Anal. 34, 2168–2194

    Article  MathSciNet  MATH  Google Scholar 

  31. Gosse, L., Toscani, G. (2002): An asymptotic preserving well-balanced scheme for the hyperbolic heat equations. C.R. Math. Acad. Sci. Paris 334, 337–342

    Article  MathSciNet  MATH  Google Scholar 

  32. Goudon, T. (1997): On Boltzmann equations and Fokker-Planck asymptotics: influence of grazing collisions. J. Statist. Phys. 89, 751–776

    Article  MathSciNet  MATH  Google Scholar 

  33. Jin, S. (1999): Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441–454

    Article  MathSciNet  MATH  Google Scholar 

  34. Jin, S., Pareschi, L. (2000): Discretization of the multiscale semiconductor Boltzmann equation by diffusive relaxation schemes. J. Comput. Phys. 161, 312–330

    Article  MathSciNet  MATH  Google Scholar 

  35. Klar, A. (1998): An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35, 1073–1094

    Article  MathSciNet  MATH  Google Scholar 

  36. Larsen, E.W. (1992): The asymptotic diffusion limit of discretized transport problems. Nuclear Sci. Engrg. 112, 336–346

    Google Scholar 

  37. Lemou, M. (1998): Multipole expansions for the Fokker-Planck-Landau operator. Numer. Math. 78, 597–618

    Article  MathSciNet  MATH  Google Scholar 

  38. Lucquin-Desreux, B. (2000): Diffusion of electrons by multicharged ions, Math. Models Methods Appl. Sci. 10, 409–440

    MathSciNet  MATH  Google Scholar 

  39. Lucquin-Desreux, B., Mancini, S. (2001): A finite element approximation of grazing collisions. Transport Theory Statist. Phys., submitted

    Google Scholar 

  40. Mallinger, F., Le Tallec, P. (1997): Coupling Boltzmann and Navier-Stokes equations by half fluxes. J. Comput. Phys. 136, 51–57

    Article  MathSciNet  MATH  Google Scholar 

  41. Markowich, P.A., Ringhofer, C.A., Schmeiser, C. (1990): Semiconductor equations, Springer, Vienna

    Book  MATH  Google Scholar 

  42. Mieussens, L. (2000): Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries. J. Comput. Phys. 162, 429–466

    Article  MathSciNet  MATH  Google Scholar 

  43. Mischler, S. (1997): Convergence of discrete-velocity schemes for the Boltzmann equation Arch. Rational Mech. Anal. 140, 53–77

    Article  MathSciNet  MATH  Google Scholar 

  44. Naldi, G., Pareschi, L. (1998): Numerical schemes for kinetic equations in diffusive regimes. Appl. Math. Lett. 11, 29–35

    Article  MathSciNet  Google Scholar 

  45. Nanbu, K. (1980): Direct simulation scheme derived from the Boltzmann equation. I. Monocomponent Gases. J. Phys. Soc. Japan 49, 2042–2049

    Article  Google Scholar 

  46. Neunzert, H., Struckmeier, J. (1995): Particle methods for the Boltzmann equation. In: Iserles, A. (ed.): Acta numerica. 1995. Cambridge University Press, Cambridge, pp. 417–457

    Google Scholar 

  47. Pareschi, L., Russo, G. (1999): An introduction to Monte Carlo methods for the Boltzmann equation. In: Coquel, F., Cordier, S. (eds.): CEMRACS. (ESAIM Proceedings, vol. 10). Société de Mathématiques Appliquées et Industrielles, Paris, pp. 35–76. http://www.emath.fr/Maths/Proc/Vol.l0

    Google Scholar 

  48. Pareschi, L., Russo, G. (2000): Asymptotic preserving Monte Carlo methods for the Boltzmann equation. Transport Theory Statist. Phys. 29, 415–430

    Article  MathSciNet  MATH  Google Scholar 

  49. Pareschi, L., Russo, G. (2000): Numerical solution of the Boltzmann equation, I. Spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37, 1217–1245

    Article  MathSciNet  MATH  Google Scholar 

  50. Pareschi, L., Russo, G., Toscani, G. (2000): Méthode spéctrale rapide pour l'équation de Fokker-Planck-Landau. C. R. Acad. Sci. Paris Ser. I Math. 330, 517–522

    Article  MathSciNet  MATH  Google Scholar 

  51. Pareschi, L., Wennberg, B. (2001): A recursive Monte Carlo method for the Boltzmann equation in the Maxwellian case. Monte Carlo Methods Appl. 7, 349–357

    Article  MathSciNet  MATH  Google Scholar 

  52. Pekker, M.S., Khudik, Y.N. (1984): Conservative difference schemes for the Fokker-Planck equation. (Russian). Zh. Vychisl. Mat. i Mat. Fiz. 24, 947–953; translated as U.S.S.R. Comput. Math. Math. Phys. 24, 206–210

    MathSciNet  Google Scholar 

  53. Perthame, B. (1990): Boltzmann type schemes for gas dynamics and the entropy property. SIAM J. Numer. Anal. 27, 1405–1421

    Article  MathSciNet  MATH  Google Scholar 

  54. Perthame, B. (1998): An introduction to kinetic schemes for gas dynamics. In: Kröner, D. et al. (eds.): An introduction to recent developments in theory and numerics for conservation laws. (Lecture Notes in Computational Science and Engineering, vol. 5). Springer, Berlin, pp. 1–27

    Chapter  Google Scholar 

  55. Rogier, F., Schneider, J. (1994): A direct method for solving the Boltzmann equation. Transport Theory Statist. Phys. 23, 313–338

    Article  MathSciNet  MATH  Google Scholar 

  56. Villani, C. (2002): A review of mathematical topics in collisional kinetic theory. In: Friedlander, S., Serre, D. (eds.): Handbook of matematical fluid dynamics. Vol. I. Elsevier, Amsterdam, pp. 71–305

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Italia

About this paper

Cite this paper

Cordier, S., Mancini, S. (2003). A brief review of numerical methods for collision operators. In: Brezzi, F., Buffa, A., Corsaro, S., Murli, A. (eds) Numerical Mathematics and Advanced Applications. Springer, Milano. https://doi.org/10.1007/978-88-470-2089-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2089-4_42

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2167-9

  • Online ISBN: 978-88-470-2089-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics