Skip to main content

Radionuclide Evaluation of Primary Bone and Soft-Tissue Tumors

  • Chapter
Musculoskeletal Diseases 2009–2012
  • 1135 Accesses

Abstract

This presentation reviews the applications of nuclear medicine imaging techniques in the evaluation of primary bone and soft-tissue malignomas in children, adolescents, and adults. The focus is on three-phase bone scintigraphy, positron emission tomography using 18F-fluoro-deoxyglucose FDG-PET), and the combination of PET and computed tomography (PET-CT). These imaging techniques are used for the grading, staging, and response control of tumors as well as for the diagnosis of tumor recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reiser M, Semmler W (2002) Magnetresonanztomographie, 3rd edn. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  2. Erlemann R, Sciuk J, Bosse A et al (1990) Response of osteosarcoma and Ewing sarcoma to preoperative chemotherapy: assessment with dynamic and static MR imaging and skeletal scintigraphy. Radiology 175:791–796

    CAS  PubMed  Google Scholar 

  3. Knop J, Delling G, Heise U, Winkler K (1990) Scintigraphic evaluation of tumor regression during preoperative chemotherapy of osteosarcoma. Skeletal Radiol 19:165–172

    Article  CAS  PubMed  Google Scholar 

  4. Bares R (1999) Leitlinien für die Skelettszintigraphie. Nuklearmedizin 38:251–253

    CAS  PubMed  Google Scholar 

  5. O’Mara RE (1988) Bone scanning in osseous metastatic disease. JAMA 229:1915–1917

    Article  Google Scholar 

  6. Algra PR, Bloem JL, Tissing H et al (1991) Detection of vertebral metastases: comparison between MR imaging and bone scintigraphy. Radiographics 11:219–232

    CAS  PubMed  Google Scholar 

  7. Link M, Sciuk J, Fründt H et al (1995) Wirbelsäu-lenmetastasen — Wertigkeit diagnostischer Verfahren bei der Erstdiagnose und im Verlauf. Radiologe 35:21–27

    CAS  PubMed  Google Scholar 

  8. Grant F, Fahey F, Packard A et al (2008) Skeletal PET with F-18-fluoride: applying new technology to an old tracer. J Nucl Med 49:68–78

    Article  PubMed  Google Scholar 

  9. Petersen M (1990) Radionuclide detection of primary pulmonary osteogenic sarcoma: a case report and review of the literature. J Nucl Med 31:1110–1114

    CAS  PubMed  Google Scholar 

  10. Othman S, El-Desouki M (2003) Bone scan appearance in aggressive osteogenic sarcoma with pleural, lung, bone, and softtissue metastases. Clin Nucl Med 28:926

    Article  PubMed  Google Scholar 

  11. Franzius C, Bielack S, Sciuk J et al (1999) High-activity Samarium-153-EDTMP therapy in unresectable osteosarcoma. Nuklearmedizin 38:337–340

    CAS  PubMed  Google Scholar 

  12. Anderson PM (1998) Sm-153-EDTMP therapy with stem cell support in patients. In: Bruland OS (ed) Towards the eradication of osteosarcoma metastases. The Norwegian Radium Hospital, Oslo, pp 87–88

    Google Scholar 

  13. Pneumaticos SG, Chatziioannou SN, Moore WH, Johnson M (2001) The role of radionuclides in primary musculoskeletal tumors beyond the “bone scan”. Crit Rev Oncol Hematol 37:217–226

    Article  CAS  PubMed  Google Scholar 

  14. Kern KA, Brunetti A, Norton JA et al (1988) Metabolic imaging of human extremity musculoskeletal tumors by PET. J Nucl Med 29:181–186

    CAS  PubMed  Google Scholar 

  15. Tateishi U, Yamaguchi U, Seki K et al (2006) Glut-1 expression and enhanced glucose metabolism are associated with tumor grade in bone and soft tissue sarcomas: a prospective evaluation by [F-l 8]fluorodeoxyglucose positron emission tomography. Eur J Nucl Med Mol Imaging 33:683–691

    Article  CAS  PubMed  Google Scholar 

  16. Franzius C, Schulte M, Hillmann A et al (2001) Klinische Wertigkeit der Positronen-Emissions-Tomographie (PET) in der Diagnostik der Knochen-und Weichteiltumore. 3. Konsensuskonferenz ‘PET in der Onkologie’, Ergebnisse der Arbeitsgruppe Knochen und Weichteiltumore. Chirurg 72:1071–1077

    Article  CAS  PubMed  Google Scholar 

  17. Bastiaannet E, Groen H, Jager PL et al (2004) The value of FDG-PET in the detection, grading and response to the thérapie of soft tissue and bone sarcomas) a systematic review and meta-analysis. Cancer Treat Rev 30:83–101

    Article  CAS  PubMed  Google Scholar 

  18. Kole AC, Nieweg OE, Hoekstra HJ et al (1998) Fluorine-18-fluorodeoxyglucose assessment of glucose metabolism in bone tumors. J Nucl Med 39:810–815

    CAS  PubMed  Google Scholar 

  19. Hamada K, Tomita Y, Qiu Y et al (2008) F-18-FDG-PET of musculoskeletal tumors: a correlation with the expression of glucose transporter 1 and hexokinase II. Ann Nucl Med 22:699–705

    Article  PubMed  Google Scholar 

  20. Schulte M, Brecht-Krauss D, Heymer B et al (1999) Fluorodeoxyglucose positron emission tomography of soft tissue tumors: is a non-invasive determination of biological activity possible? Eur J Nucl Med 26:599–605

    Article  CAS  PubMed  Google Scholar 

  21. Schulte M, Brecht-Krauss D, Heymer B et al (2000) Grading of tumors and tumorlike lesions of bone: evaluation by 2-(fluorine-18)-fluoro-2deoxy-D-glucose positron emission tomography. J Nucl Med 41:1695–1701

    CAS  PubMed  Google Scholar 

  22. Eary JF, Conrad EU, Bruckner JD et al (1998) Quantitative (F-18) fluorodeoxy glucose positron emission tomography in pretreatment and grading of sarcoma. Clin Cancer Res 4:1215–1220

    CAS  PubMed  Google Scholar 

  23. Brenner W, Conrad EU, Eary JF (2004) FDG PET imaging for grading and prediction of outcome in chondrosarkoma patients. Eur J Nucl Med Mol Imaging 31:189–195

    Article  PubMed  Google Scholar 

  24. Hain S, O’Doherty M, Bingham J et al (2003) Can FDG-PET be used to successfully direct preoperative biopsy of soft tissue tumours? Nucl Med Commun 24:1139–1143

    Article  CAS  PubMed  Google Scholar 

  25. Eary JF, O’Sullivan F, Powitan Y et al (2002) Sarcoma tumor FDG uptake measurement by PET and patient outcome: a retrospective analysis. Eur J Nucl Med Mol Imaging 29:1149–1154

    Article  CAS  PubMed  Google Scholar 

  26. Franzius C, Bielack S, Flege S et al (2002) Prognostic significance of F-18-FDG and Tc-99m-methylene diphosphonate uptake in primary osteosarcoma. J Nucl Med 43:1012–1017

    CAS  PubMed  Google Scholar 

  27. Brenner W, Eary J, Hwang W et al (2006) Risk assessment in liposarcoma patients based on FDG PET imaging. Eur J Nucl Med Mol Imaging

    Google Scholar 

  28. Hawkins DS, Schuetze SM, Butrynski JE et al (2005) [F-18] Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol 23:8828–8834

    Article  PubMed  Google Scholar 

  29. Schuetze S, Rubin B, Vernon C et al (2005) Use of positron emission tomography in localized extremity soft tissue sarcoma treated with neoadjuvant chemotherapy. Cancer 103:339–348

    Article  PubMed  Google Scholar 

  30. Eary J, O’Sullivan F, O’Sullivan J, Conrad E (2008) Spatial heterogeneity in sarcoma F-18-FDG uptake as a predictor of patient outcome. J Nucl Med 49:1973–1979

    Article  PubMed  Google Scholar 

  31. Franzius C, Daldrup-Link HE, Sciuk J et al (2001) FDG-PET for detection of pulmonary metastases from malignant primary bone tumors: comparison with spiral CT. Ann Oncol 12:479–486

    Article  CAS  PubMed  Google Scholar 

  32. Lucas JD, O’Doherty MJ, Wong JCH et al (1998) Evaluation of fluorodeoxyglucose positron emission tomography in the management of soft-tissue sarcoma. J Bone Joint Surg (Br) 80-B:441–447

    Article  Google Scholar 

  33. Gyoerke T, Zajic T, Lange A et al (2006) Impact of FDG PET for staging of Ewing sarcomas and primitive neuroectodermal tumours. Nucl Med Commun 27:17–24

    Article  Google Scholar 

  34. Iagaru A, Chawia S, Menendez L, Conti P (2006) F-18-FDG PET and PET/CT for detection of pulmonary metastases from musculoskeletal sarcomas. Nucl Med Commun 27:795–802

    Article  PubMed  Google Scholar 

  35. Franzius C, Sciuk J, Daldrup-Link HE et al (2000) FDG-PET for detection of osseous metastases from malignant primary bone tumors: comparison with bone scintigraphy. Eur J Nucl Med 27:1305–1311

    Article  CAS  PubMed  Google Scholar 

  36. Voelker T, Denecke T, Steffen I et al (2007) Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 25:5435–5441

    Article  Google Scholar 

  37. Zamagni E, Nanni C, Patriarca F et al (2007) A prospective comparison of F-18-fluorodeoxyglucose positron emission tomography-computed tompgraphy, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica 92:50–55

    Article  PubMed  Google Scholar 

  38. Fonti R, Salvatore B, Quarantelli M et al (2008) F-18-FDG PET/CT, Tc-99m-MIBI, and MRI in evaluation of patients with multiple myeloma. J Nucl Med 49:195–200

    Article  PubMed  Google Scholar 

  39. Hur J, Yoon C, Ryu Y et al (2008) Comparative study of fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for the detection of spinal bone marrow infiltration in untreated patients with multiple myeloma. Acta Radiol 49:427–435

    Article  CAS  PubMed  Google Scholar 

  40. Nanni C, Rubello D, Zamagni E et al (2008) F-18-FDG PET/CT in myeloma with presumed solitary plasmocytoma of bone. In Vivo 22:513–517

    PubMed  Google Scholar 

  41. Hawkins DS, Rajendran JG, Conrad EU et al (2002) Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-d-glucose positron emission tomography. Cancer 94:3277–3284

    Article  CAS  PubMed  Google Scholar 

  42. Nair N, Ali G, Green AA et al (2000) Response of osteosarcoma to chemotherapy. Evaluation with F-18 FDG-PET scans. Clin Positron Imaging 3:79–83

    Article  PubMed  Google Scholar 

  43. Schulte M, Brecht-Krauss D, Werner M et al (1999) Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG-PET. J Nucl Med 40:1637–1643

    CAS  PubMed  Google Scholar 

  44. Franzius C, Sciuk J, Brinkschmidt C et al (2000) Evaluation of chemotherapy response in primary bone tumors with F-18-FDG-PET compared with histologically assessed tumor necrosis. Clin Nucl Med 25:874–881

    Article  CAS  PubMed  Google Scholar 

  45. Evilevitch V, Weber W, Tap W et al (2008) Reduction of glucose metabolic activity is more accurate than change in size at predicting histopathologic response to neoadjuvant therapy in high-grade soft-tissue sarcomas. Clin Cancer Res 14:715–720

    Article  CAS  PubMed  Google Scholar 

  46. Benz M, Alien-Auerbach M, Eilber F et al (2008) Combined assessment of metabolic and volumetric changes for assessment of tumor response in patients with soft-tissue sarcoma. J Nucl Med 49:1579–1584

    Article  PubMed  Google Scholar 

  47. Benz M, Evilevitch V, Alien-Auerbach M et al (2008) Treatment monitoring by F-18-FDG PET/CT in patients with sarcomas: interobserver variability of quantitative parameters in treatment-induced changes in histopathologically responding and nonresponding tumors. J Nucl Med 49:1038–1049

    Article  PubMed  Google Scholar 

  48. Ye Z, Zhu J, Tian M, Zhang H et al (2008) Response of osteogenic sarcoma to neoadjuvant therapy: evaluated ba F-18-FDG PET. Ann Nucl Med 22:475–480

    Article  PubMed  Google Scholar 

  49. Huang T, Liu R, Chen T et al (2006) Comparison between F-18-FDG positron emission tomography and histology for the assessment of tumor necrosis rates in primary osteosarcoma. J Chin Med Assoc 69:372–376

    Article  PubMed  Google Scholar 

  50. Iagaru A, Masamed R, Chawia S et al (2008) F-18 FDG PET and PET/CT evalation of response to chemotherapy in bone and soft-tissue sarcomas. Clin Nucl Med 33:8–13

    Article  PubMed  Google Scholar 

  51. Franzius C, Daldrup-Link HE, Wagner-Bohn A et al (2002) FDG PET for detection of recurrences from malignant primary bone tumors: Comparison with conventional imaging. Ann Oncol 13:157–160

    Article  CAS  PubMed  Google Scholar 

  52. Bredella MA, Caputo GR, Steinbach LS (2002) Value of FDG positron emission tomography in conjunction with MR imaging for evaluating therapy response in patients with musculosceletal sarcomas. Am J Roentgenol 179:1145–1150

    Google Scholar 

  53. Johnson GR, Zhuang H, Khan J et al (2003) Roles of positron emission tomography with fluorine-18 deoxyglucose in the detection of local recurrent and distant metastatic sarcoma. Clin Nucl Med 28:815–820

    Article  PubMed  Google Scholar 

  54. Arush M, Israel O, Postovsky S et al (2007) Positron emission tomography/computed tomography with (18) fluoro-deoxyglucose in the detection of local recurrence and distant metastases in pediatric sarcoma. Pediatr Blood Cancer 24: epub ahead of print

    Google Scholar 

  55. Gerth H, Juergens K, Dirksen U et al (2007) Significant benefit of multimodal imaging: PET/CT compared with PET alone in staging and follow-up of patients with Ewing sarcoma. J Nucl Med 48:1932–1939

    Article  PubMed  Google Scholar 

  56. Tang G, Wang M, Tang X et al (2003) Synthesis and evaluation of 0-(3-[18F]fluoropropyl)-L-tyrosine as an oncologic PET tracer. Nucl Med Biol 30:733–739

    Article  CAS  PubMed  Google Scholar 

  57. Buck A, Herrmann K, Bueschenfelde C et al (2008) Imaging bone and soft tissue tumors with the proliferation marker [F18]fluorodesoxythymidine. Clin Cancer Res 14:2970–2977

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Franzius, C. (2009). Radionuclide Evaluation of Primary Bone and Soft-Tissue Tumors. In: Hodler, J., Zollikofer, C.L., Von Schulthess, G.K. (eds) Musculoskeletal Diseases 2009–2012. Springer, Milano. https://doi.org/10.1007/978-88-470-1378-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1378-0_34

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1377-3

  • Online ISBN: 978-88-470-1378-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics