Skip to main content

Evolutionary relationships among cyanobacteria, algae and plants: Revisited in the light of Darwinism

  • Chapter

Abstract

Algae represent an ancient group of plant like organisms, comprising a heterogeneous, polyphyletic assemblage of prokaryotes and eukaryotes, which have been primarily classified on the basis of their pigments, storage food material and cell wall characteristics. They have been playing a critical role in shaping the Earth’s atmosphere, recycling major elements such as C and N and mediating key biogeochemical processes and were the first to colonize land. Algae have been often conceptually and systematically linked to the land plants because they include some forms — such as seaweeds/kelps, which look much like plants, and as with plants — they are commonly sessile (attached/rooted/occurring in mixed communities) and oxygenic photosynthesizers. DNA evidence suggests that the first eukaryotes (green plants) evolved from prokaryotes (through endosymbiotic events) between 2500 and 1000 million years ago. Among algae, blue green algae or cyanobacteria represent an ancient group of photosynthetic prokaryotes, whose ubiquity, metabolic flexibility and adaptive abilities have made them a subject of research worldwide. Their biological significance, especially as the prokaryotic interface between the primeval photosynthetic cell and present day plants is also well recognized. Darwin’s Theory of Evolution and Natural Selection have shaped much of our understanding of the evolution of this cosmopolitan group of algae and land plants. However, in the current scenario, with the advent of molecular phylogenetics and the expanding knowledge regarding the evolution of life through the use of bioinformatics, a thorough re-evaluation of algae and interrelationships with plants is needed. This compilation attempts to link Darwinism, Neo-Darwinism and Systemic Darwinism, with the rapidly generated information through modern molecular tools for a better understanding of evolution of land plants, as mediated through algae and endosymbiotic events combined with horizontal and lateral gene transfer processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prasanna R, Kaushik BD (2005) Algal diversity from morphology to molecules. In: Microbial Diversity: Current Perspectives and Potential Applications. Satyanarayana T, Johri BN (Eds.), IK International, New Delhi

    Google Scholar 

  2. Darley WM (1982) In: Algal Biology: A Physiological Approach. Blackwell Scientific, Oxford, UK

    Google Scholar 

  3. Borowitzka MA (1998) Tubular photo bioreactors for large-scale algal culture. In: Cyanobacterial Biotechnology. Subramanian G, Kaushik BD, Venkatamaran GS (Eds.), Oxford & IBH Publishing Co., New Delhi

    Google Scholar 

  4. Darwin C (1895) In: On the Origin of Species. Murray, London

    Google Scholar 

  5. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  PubMed  CAS  Google Scholar 

  6. Gould SJ, Lloyd EA (1999) Individuality and adaptation across levels of selection: How shall we name and generalize the unit of Darwinism. Proc Nat Acad Sci USA 96:11904–11909

    Article  PubMed  CAS  Google Scholar 

  7. Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: Molecular-phylogenetic and paleontological perspectives. Proc Nat Acad Sci USA 103:5442–5447

    Article  PubMed  CAS  Google Scholar 

  8. Winther RG (2008) Systemic Darwinism. Proc Nat Acad Sci USA 105:11833–11838

    Article  PubMed  CAS  Google Scholar 

  9. John DM, Maggs CA (1997) In: Species: The Units of Biodiversity. Claridge MF, Dawah HA, Wilson MR (Eds.), Chapman and Hall, London

    Google Scholar 

  10. Hoek van den C, Mann DG, Jahns HM (1995) In: Algae: An introduction to Phycology. Cambridge University Press, Cambridge

    Google Scholar 

  11. Ali AB, Baere RD, Auwera GVD, Wachter RD, Peer YVD (2001) Phylogenetic relationships among algae based on complete large-subunit rRNA sequences. Int J Syst Evolu Microbiol 51:737–749

    Article  Google Scholar 

  12. Koonin EV, Mushegian AR, Rudd KE (1996) Sequencing and analysis of bacterial genomes. Curr Biol 6:404–416

    Article  PubMed  CAS  Google Scholar 

  13. Nozaki H, Matsuzaki M, Misumi O, Kuroiwa H, Hasegawa, M, Higashiyama T, Shin-I T,Kohara Y, Ogasawara N, Kuroiwa T (2004) Cyanobacterial genes transmitted to the nucleus before divergence of red algae in the chromista. J Molecul Evolut 59:103–113

    CAS  Google Scholar 

  14. Kumar S, Rzhetsky A (1996) Evolutionary relationships of Eukaryotic kingdoms. J Molecul Evolut 42:183–193

    Article  CAS  Google Scholar 

  15. Shi T, Falkowski PG (2008) Genome evolution in cyanobacteria: The stable core and the variable shell. Proc Nat Acad Sci USA 105:2510–2515

    Article  PubMed  CAS  Google Scholar 

  16. Raven JA, Douglas AE (2003) Genomes at the interface between bacteria and organelles. Proc R Soc Lond B Biol Sci 358:5–18

    Article  Google Scholar 

  17. Mereschkowsky C (1905) Uber Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biologia Centralbl 25:593–604

    Google Scholar 

  18. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc Nat Acad Sci USA 74:5088–5090

    Article  PubMed  CAS  Google Scholar 

  19. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  20. Gray MW(1992) The endosymbiont hypothesis revisited. Int Rev Cytol 141:233–357

    Google Scholar 

  21. Masayuki I, Makoto F, Kintake S, Naoki S (2009) Orthogenomics of photosynthetic organisms: Bioinformatic and experimental analysis of chloroplast proteins of endosymbiont origin in arabidopsis and their counterparts in synechocystis. Plant Cell Physiol 50(4): 773–788

    Article  Google Scholar 

  22. Liang C, Zhao F, Wei W, Wen Z, Qin S (2006) Carotenoid biosynthesis in cyanobacteria: Structural and evolutionary scenarios based on comparative genomics. Int J Biol Sci 2(4):197–207

    Article  PubMed  CAS  Google Scholar 

  23. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  24. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Nat Acad Sci USA 99:12246–12251

    Article  PubMed  CAS  Google Scholar 

  25. Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd, Kaznadzey D, Haselkorn R, Galperin Y (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Nat Acad Sci USA 103:13126–13131

    Article  PubMed  CAS  Google Scholar 

  26. Lopez-Juez E (2007) Plastid biogenesis, between light and shadows. J Exper Bot 58: 11–26

    Article  CAS  Google Scholar 

  27. Zhang Y, Chen M, Zhou BB, Jerminn LS, Larkum WD (2007) Evolution of the inner light-harvesting antenna protein family of cyanobacteria, algae, and plants. J Mol Evol 64:321–331

    Article  PubMed  CAS  Google Scholar 

  28. Dagan T, Martin W (2006) Getting a picture of microbial evolution en route to a network of genomes. Philosophical Transactions of the Royal Society (London). B Biological Sciences 364:2187–2196

    Article  Google Scholar 

  29. Koonin EV (2009) Darwinian evolution in light of genomics. Nucleic Acids Res 37: 1011–1034

    Article  PubMed  CAS  Google Scholar 

  30. Raymond J, Blankenship RE (2003) Horizontal gene transfer in eukaryotic algal evolution. Proc Nat Acad Sci USA 100:7419–7420

    Article  PubMed  CAS  Google Scholar 

  31. Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687

    Article  PubMed  CAS  Google Scholar 

  32. Palenik B (2002) The genomics of symbiosis: Hosts keep the baby and the bath water. Proc Nat Acad Sci USA 99:11996–11997

    Article  PubMed  CAS  Google Scholar 

  33. Raven JA, Allen JF (2003) Genomics and chloroplast evolution: What did cyanobacteria do for plants? Genome Biol 4:209

    Article  PubMed  Google Scholar 

  34. Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke T (2006) Phylogenetic analyses of cyanobacterial genomes: Quantification of horizontal gene transfer events. Genome Res 16:1099–1108

    Article  PubMed  CAS  Google Scholar 

  35. Lynch M (2007) In: The Origin of Genome Architecture. Sinauer Associates, Sunderland, MA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 The National Academy of Sciences, India

About this chapter

Cite this chapter

Prasanna, R., Kaushik, B.D. (2010). Evolutionary relationships among cyanobacteria, algae and plants: Revisited in the light of Darwinism. In: Sharma, V.P. (eds) Nature at Work: Ongoing Saga of Evolution. Springer, New Delhi. https://doi.org/10.1007/978-81-8489-992-4_9

Download citation

Publish with us

Policies and ethics