Skip to main content

Modeling Systems and Processes in Wetlands: A Case Study of Engineered Bioremediation of BTEX-Contaminated Water in Treatment Wetlands

  • Chapter
  • First Online:
Wetland Science

Abstract

A number of pollutants are released to the soil-water systems due to various anthropogenic activities. One of the most environmentally benign treatment options of such pollutants is bioremediation. Since natural bioremediation is quite slow, engineered bioremediation techniques like bio-stimulation and bio-augmentation could be used in treatment wetlands (TWs) for hastening the cleaning process. In this chapter, the enhanced bioremediation techniques and the role of plants in the treatment wetlands are discussed. The empirical equations used to evaluate the wetland performance are described next. Subsequently, the governing mass balance equations and the relevant degradation kinetics used for mechanistic modeling of the fate and transport of these contaminants in the rhizosphere zone are discussed. At the end, case studies of batch experiments and pot-scale treatment wetlands are included for practical understanding of the engineered bioremediation process using treatment wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez PJJ, Illman WA (2006) Bioremediation and natural attenuation, process fundamentals and mathematical models. Wiley-Interscience, p 1:24

    Google Scholar 

  • Armstrong J, Armstrong W (1991) A convective through-flow of gases in Phragmites australis (Cav.) Trin. ex Steud. Aquat Bot 39:75–88

    Article  Google Scholar 

  • Basu S, Yadav B, Mathur S (2015) Enhanced bioremediation of BTEX contaminated groundwater in pot-scale wetlands. Environ Sci Pollut Res 22(24):20041–20049. doi:10.1007/s11356-015-5240-x

    Article  CAS  Google Scholar 

  • Bedessem ME, Ferro AM, Hiegel T (2007) Pilot-scale constructed wetlands for petroleum-contaminated groundwater. Water Environ Res 79:581–586. doi:10.2175/106143006X111943

    Article  CAS  Google Scholar 

  • Boonsaner M, Borrirukwisitsak S, Boonsaner A (2011) Phytoremediation of BTEX contaminated soil by Canna generalis. Ecotoxicol Environ Saf 74:1700–1707. doi:10.1016/j.ecoenv.2011.04.011

    Article  CAS  Google Scholar 

  • Brennan MA, Shelley ML (1999) A model of the uptake, translocation, and accumulation of lead (Pb) by maize for the purpose of phytoextraction. Ecol Eng 12:271–297. doi:10.1016/S0925-8574(98)00073-1

    Article  Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA (1982) Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic Sci 13(5):495–504

    Article  CAS  Google Scholar 

  • Bromilow RH, Chamberlain K (1995) Principles governing uptake and chemicals in plant contamination: modelling and simulation of organic chemical processes Trapp S McFarlane JC (Eds), Lewis Publishers, pp 37–68

    Google Scholar 

  • Brovelli A, Malaguerra F, Barry DA (2009) Bioclogging in porous media: model development and sensitivity to initial conditions. Environ Model Softw 24:611–626

    Article  Google Scholar 

  • Burken JG, Schnoor JL (1999) Distribution and volatilization of organic compounds following uptake by hybrid poplar trees. Int J Phytoremediat 1:139–151. doi:10.1080/15226519908500012

    Article  CAS  Google Scholar 

  • Carlson RW, Bazzaz FA (1977) Growth reduction in American sycamore (Plantanus occidentalis L.) caused by Pb Cd interaction. Environ Pollut 12:243–253

    Article  CAS  Google Scholar 

  • Cheng S, Xiao J, Xiao H et al (2007) Phytoremediation of triazophos by Canna indica Linn. in a hydroponic system. Int J Phytoremediat 9:453–463

    Article  CAS  Google Scholar 

  • Cooper P (1999) A review of the design and performance of vertical-flow and hybrid reed bed treatment systems. Water Sci Technol 40(3):1–9

    Article  CAS  Google Scholar 

  • Corseuil HX, Moreno FN (2001) Phytoremediation potential of willow trees for aquifers contaminated with ethanol-blended gasoline. Water Res 35:3013–3017. doi:10.1016/S0043-1354(00)00588-1

    Article  CAS  Google Scholar 

  • Cui L, Ouyang Y, Lou Q et al (2010) Removal of nutrients from wastewater with Canna indica L. under different vertical-flow constructed wetland conditions. Ecol Eng 36:1083–1088. doi:10.1016/j.ecoleng.2010.04.026

    Article  Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. Vitr Cell Dev Biol 29:207–212

    Article  Google Scholar 

  • Davis LC, Erickson LE, Lee E et al (1993) Modeling the effects of plants on the bioremediation of contaminated soil and ground water. Environ Prog 12:67–75. doi:10.1002/ep.670120112

    Article  CAS  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275. doi:10.1016/j.mib.2005.04.011

    Article  CAS  Google Scholar 

  • Gessner TP, Kadlec RH, Reaves RP (2005) Wetland remediation of cyanide and hydrocarbons. Ecol Eng 25:457–469. doi:10.1016/j.ecoleng.2005.07.015

    Article  Google Scholar 

  • Giraldi D, de Michieli VM, Iannelli R (2010) FITOVERT: a dynamic numerical model of subsurface vertical flow constructed wetlands. Environ Model Softw 25:633–640. doi:10.1016/j.envsoft.2009.05.007

    Article  Google Scholar 

  • Grosse W, Büchel HB, Tiebel H (1991) Pressurized ventilation in wetland plants. Aquat Bot 39:89–98

    Article  Google Scholar 

  • Hijosa-Valsero M, Sidrach-Cardona R, Martín-Villacorta J et al (2011) Statistical modelling of organic matter and emerging pollutants removal in constructed wetlands. Bioresour Technol 102:4981–4988. doi:10.1016/j.biortech.2011.01.063

    Article  CAS  Google Scholar 

  • Ji G, Sun T, Zhou Q et al (2002) Constructed subsurface flow wetland for treating heavy oil-produced water of the Liaohe Oilfield in China. Ecol Eng 18:459–465

    Article  Google Scholar 

  • Jobson AM, Cook FD, Westlake DWS (1974) Effect of amendments on the microbial utilization of oil applied to soil. Appl Microbiol 27:166–171

    CAS  Google Scholar 

  • Jordahl JL, Foster L, Schnoor JL, Alvarez PJJ (1997) Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environ Toxicol Chem 16:1318–1321

    Article  CAS  Google Scholar 

  • Kadlec RH (1992) Hydrological factors in wetland water treatment. In: Hammer D (ed) Constructed wetlands for wastewater treatment: municipal, industrial and agricultural. Lewis Publishers, Chelsea, pp 25–29

    Google Scholar 

  • Kadlec RH (2000) The inadequacy of first-order treatment wetland models. Ecol Eng 15:105–119

    Article  Google Scholar 

  • Kadlec RH (2003) Effects of pollutant speciation in treatment wetlands design. Ecol Eng 20:1–16

    Article  Google Scholar 

  • Kumar JLG, Zhao YQ (2011) A review on numerous modeling approaches for effective, economical and ecological treatment wetlands. J Environ Manag 92:400–406. doi:10.1016/j.jenvman.2010.11.012

    Article  CAS  Google Scholar 

  • Lahvis MA, Baehr AL, Baker RJ (1999) Quantification of aerobic biodegradation and volatilization rates of gasoline hydrocarbons near the water table under natural attenuation conditions. Water Resour Res 35:753–765

    Article  CAS  Google Scholar 

  • Langergraber G (2008) Modeling of processes in subsurface flow constructed wetlands: a review. Vadose Zo J 7:830. doi:10.2136/vzj2007.0054

    Article  Google Scholar 

  • Langergraber G, Haberl R (2001) Constructed wetlands for water treatment. Minerva Biotechnol 13:123–134

    Google Scholar 

  • Langergraber G, Rousseau DPL, García J et al (2009) CWM1: a general model to describe biokinetic processes in subsurface flow constructed wetlands. Water Sci Technol 59:1687–1697

    Article  CAS  Google Scholar 

  • Lendvay JM, Löffler FE, Dollhopf M et al (2003) Bioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol 37:1422–1431. doi:10.1021/es025985u

    Article  CAS  Google Scholar 

  • Lin C-W, Chen L-H, Y-P I, Lai C-Y (2010) Microbial communities and biodegradation in lab-scale BTEX-contaminated groundwater remediation using an oxygen-releasing reactive barrier. Bioprocess Biosyst Eng 33:383–391. doi:10.1007/s00449-009-0336-7

    Article  CAS  Google Scholar 

  • Llorens E, Saaltink MW, Garcia J (2011a) CWM1 implementation in Retraso Code Bright: first results using horizontal subsurface flow constructed wetland data. Chem Eng J 166(1):224–232

    Article  CAS  Google Scholar 

  • Llorens E, Saaltink MW, Poch M, García J (2011b) Bacterial transformation and biodegradation processes simulation in horizontal subsurface flow constructed wetlands using CWM1- RETRASO. Bioresour Technol 102(2):928–936

    Article  CAS  Google Scholar 

  • Lyman WJ, Reidy PJ, Levy B (1992) Mobility and degradation of organic contaminants in subsurface environments. C. K. Smoley, Chelsea

    Google Scholar 

  • Mascolo G, Ciannarella R, Balest L, Lopez A (2008) Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: a laboratory investigation. J Hazard Mater 152:1138–1145

    Article  CAS  Google Scholar 

  • Mathur S, Yadav BK (2009) Phytoextraction modeling of heavy metal (lead) contaminated site using maize (Zea mays). Pract Period Hazard Toxic Radioact Waste Manag 13:229–238

    Article  CAS  Google Scholar 

  • Mitchell C, McNevin D (2001) Alternative analysis of BOD removal in subsurface flow constructed wetlands employing Monod kinetics. Water Res 35:1295–1303

    Article  CAS  Google Scholar 

  • Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394

    Article  CAS  Google Scholar 

  • Moore BJ, Headley JV, Dupont RR et al (2002) Abatement of gas-condensate hydrocarbons in a natural wetland. J Environ Sci Health A 37:425–438

    Article  CAS  Google Scholar 

  • Narayanan M, Davis LC, Tracy JC et al (1998a) Modeling the fate of toluene in a chamber with alfalfa plants. 2. Numerical results and comparison study. J Hazard Subst Res 1:40–84

    Google Scholar 

  • Narayanan M, Tracy JC, Davis LC, Erickson LE (1998b) Modeling the fate of toluene in a chamber with alfalfa plants. 1. Theory and modeling concepts. J Hazard Subst Res 1:1–30

    Google Scholar 

  • Niell WLO, Nzengung VA (2004) In-situ bioremediation and phytoremediation of contaminated soils and water: three case studies. Environ Res Eng Manag 4:49–54

    Google Scholar 

  • Nikolopoulou M, Kalogerakis N (2009) Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. J Chem Technol Biotechnol 84:802–807

    Article  CAS  Google Scholar 

  • Ojeda E, Caldentey J, Saaltink MW, García J (2008) Evaluation of relative importance of different microbial reactions on organic matter removal in horizontal subsurface-flow constructed wetlands using a 2D simulation model. Ecol Eng 34:65–75

    Article  Google Scholar 

  • Omari K, Revitt M, Shutes B, Garelick H (2003) Hydrocarbon removal in an experimental gravel bed constructed wetland. Water Sci Technol 48:275–281

    CAS  Google Scholar 

  • Ottová V, Balcarová J, Vymazal J (1997) Microbial characteristics of constructed wetlands. Water Sci Technol 35:117–123

    Article  Google Scholar 

  • Powell CL, Goltz MN, Agrawal A (2014) Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots. J Contam Hydrol 170:68–75. doi:10.1016/j.jconhyd.2014.10.001

    Article  CAS  Google Scholar 

  • Prasad MNV, Freitas HMDO (2003) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:110–146

    Article  Google Scholar 

  • Ranieri E, Gikas P, Tchobanoglous G (2013) BTEX removal in pilot-scale horizontal subsurface flow constructed wetlands. Desalin Water Treat 51:3032–3039. doi:10.1080/19443994.2012.748453

    Article  CAS  Google Scholar 

  • Rousseau DPL, Vanrolleghem PA, De Pauw N (2004) Model-based design of horizontal subsurface flow constructed treatment wetlands: a review. Water Res 38(6):1484–1493

    Article  CAS  Google Scholar 

  • Salmon C, Crabos JL, Sambuco JP et al (1998) Artificial wetland performances in the purification efficiency of hydrocarbon wastewater. Water Air Soil Pollut 104:313–329

    Article  CAS  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC et al (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318A–323A. doi:10.1021/es00007a747

    Article  CAS  Google Scholar 

  • Seagren EA, Rittmann BE, Valocchi AJ (1994) Quantitative evaluation of the enhancement of NAPL-pool dissolution by flushing and biodegradation. Environ Sci Technol 28:833–839

    Article  CAS  Google Scholar 

  • Seidel K (1967) Biologischer Schutz unserer Seen durch Pflanzen. Osterrreichische Fischerei 1:3–7

    Google Scholar 

  • Shepherd HL, Tchobanoglous G, Grismer ME (2001) Time-dependent retardation model for chemical oxygen demand removal in a subsurface-flow constructed wetland for winery wastewater treatment. Water Environ Res 73:597–606

    Article  CAS  Google Scholar 

  • Shimp JF, Tracy JC, Davis LC et al (1993) Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials. Crit Rev Environ Sci Technol 23:41–77

    Article  CAS  Google Scholar 

  • Sidiropoulou MG, Moutsopoulos KN, Tsihrintzis VA (2007) Determination of Forchheimer equation coefficients a and b. Hydrol Process 21:534–554

    Article  Google Scholar 

  • Simunek J, van Genuchten M, Th Sejna M (2006). The HYDRUS software package for simulating two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, technical manual, Version 1.0, PC Progress Prague, Czech Republic

    Google Scholar 

  • Stein OR, Biederman JA, Hook PB, Allen WC (2006) Plant species and temperature effects on the k–C⁎ first-order model for COD removal in batch-loaded SSF wetlands. Ecol Eng 26(2):100–112

    Article  Google Scholar 

  • Stone KC, Hunt PG, Szögi AA et al (2002) Constructed wetland design and performance for swine lagoon wastewater treatment. Trans ASAE 45:723–730

    Article  CAS  Google Scholar 

  • Sun G, Saeed T (2009) Kinetic modeling of organic matter removal in 80 horizontal flow reed beds for domestic sewage treatment. Process Biochem 44:717–722

    Article  CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658. doi:10.1016/S0925-8574(02)00026-5

    Article  Google Scholar 

  • Tang X, Tang X, Eke PE et al (2009) Processes impacting on benzene removal in vertical-flow constructed wetlands. Bioresour Technol 100:227–234. doi:10.1016/j.biortech.2008.05.038

    Article  CAS  Google Scholar 

  • Ting YP, Lawson F, Prince IG (1989) Uptake of cadmium and zinc by the alga Chlorella vulgaris: part 1. Individual ion species. Biotechnol Bioeng 34:990–999

    Article  CAS  Google Scholar 

  • Toscano A, G Langergraber and GL Cirelli (2006) Simulation of hydraulics and pollutant removal of a pilot-scale two-stage constructed wetlands functioning as secondary or tertiary treatment. p. 1303–1311. In: Proceedings of IWA Specialized Group Conference on Wetland Systems for Water Pollution Control, Vol. 2, 10th, Lisbon, Portugal. 23–29 Sept. 2006. International Water Association, London

    Google Scholar 

  • Trapp S (2000) Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manag Sci 56:767–778

    Article  CAS  Google Scholar 

  • Uddameri V (2010) An analytical solution to model aquaculture wetlands subject to intermittent loading and variable initial concentrations. Environ Model Assess 15:27–35

    Article  Google Scholar 

  • USEPA, (1993) Subsurface flow constructed wetlands for wastewater treatment: a technology assessment. United States Environmental Protection Agency Report 542- R-01-004. Washington, DC.

    Google Scholar 

  • USEPA (2000) A handbook of constructed wetlands: a guide to creating wetlands for: agricultural wastewater, domestic wastewater, coal mine drainage stormwater in the mid – atlantic region: volume 1: general considerations. United States Environmental Protection Agency, EPA Report Number 843B00005, ISBN 0–16- 052999-9. Washington, DC.

    Google Scholar 

  • USEPA (2006). Edition of the drinking water standards and health Advisories. EPA 822-R-06-013, Washington, DC

    Google Scholar 

  • Venosa AD, Lee K, Suidan MT et al (2002) Bioremediation and biorestoration of a crude oil-contaminated freshwater wetland on the St. Lawrence River. Bioremdiation J 6:261–281

    Article  CAS  Google Scholar 

  • Vymazal J (2005) Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecol Eng 25:478–490

    Article  Google Scholar 

  • Wallace SD and Knight RL (2006) Small-scale constructed treatment systems: feasibility, design criteria, and O and M requirements. Final report, Project 01-CTS-5. Water Environment Research Foundation, Alexandria, Virginia

    Google Scholar 

  • Wang N, Mitsch WJ (2000) A detailed ecosystem model of phosphorus dynamics in created riparian wetlands. Ecol Model 126:101–130

    Article  CAS  Google Scholar 

  • Weishaar JA, Tsao D, Burken JG (2009) Phytoremediation of BTEX hydrocarbons: potential impacts of diurnal groundwater fluctuation on microbial degradation. Int J Phytoremediation 11:509–523. doi:10.1080/15226510802656326

    Article  CAS  Google Scholar 

  • Wemple, C. and Hendricks, L. (2000) Documenting the recovery of hydrocarbon impacted wetlands: a multi-disciplinary approach. In: Wetlands and remediation: An International Conference, Battelle Press, Columbus, Ohio, p 73–78

    Google Scholar 

  • Williams JB (2002) Phytoremediation in wetland ecosystems: progress, problems, and potential. CRC Crit Rev Plant Sci 21:607–635. doi:10.1080/0735-260291044386

    Article  CAS  Google Scholar 

  • Wu L-Qi., Cheng S.-P., Yang L.-H., and Wu Z.-B., (2007) Stress responses and resistance mechanism of Canna indica Linn. to cadmium and copper. J Agro-Environ Sci: 2007-04

    Google Scholar 

  • Yadav BK, Hassanizadeh SM (2011) An overview of biodegradation of LNAPLs in coastal (semi)-arid environment. Water Air Soil Pollut 220:225–239. doi:10.1007/s11270-011-0749-1

    Article  CAS  Google Scholar 

  • Yadav BK, Siebel MA, Van Bruggen JJA et al (2011) Rhizofiltration of a heavy metal (lead) containing wastewater using the wetland plant Carex pendula. CLEAN – Soil Air Water 39:467–474. doi:10.1002/clen.201000385

    Article  CAS  Google Scholar 

  • Yadav BK, Ansari FA, Basu S (2013) Remediation of LNAPL contaminated groundwater using plant-assisted biostimulation and bioaugmentation methods. Water Air Soil Pollut. doi:10.1007/s11270-013-1793-9

    Google Scholar 

  • Yerokun OA, Christenson DR (1990) Relating high soil test phosphorus concentrations to plant phosphorus uptake. Soil Sci Soc Am J 54:796–799

    Article  CAS  Google Scholar 

  • Zhu X, Suidan MT, Venosa AD (2004) Literature review on the use of commercial bioremediation agents for cleanup of oil-contaminated estuarine environments. USEPA

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Department of Science and Technology (DST) and Council of Scientific and Industrial Research (CSIR) in India for their financial support to this research as Ramanujan Award and Senior Research Fellowship to the authors. We are also thankful to Prof. Majid Hassanizadeh from Utrecht University for his valuable contribution and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreejita Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Basu, S., Yadav, B.K., Mathur, S. (2017). Modeling Systems and Processes in Wetlands: A Case Study of Engineered Bioremediation of BTEX-Contaminated Water in Treatment Wetlands. In: Prusty, B., Chandra, R., Azeez, P. (eds) Wetland Science . Springer, New Delhi. https://doi.org/10.1007/978-81-322-3715-0_24

Download citation

Publish with us

Policies and ethics